Space Ant
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 3967   Accepted: 2489

Description

The most exciting space discovery occurred at the end of the 20th century. In 1999, scientists traced down an ant-like creature in the planet Y1999 and called it M11. It has only one eye on the left side of its head and just three feet all on the right side of its body and suffers from three walking limitations: 
  1. It can not turn right due to its special body structure.
  2. It leaves a red path while walking.
  3. It hates to pass over a previously red colored path, and never does that.

The pictures transmitted by the Discovery space ship depicts that plants in the Y1999 grow in special points on the planet. Analysis of several thousands of the pictures have resulted in discovering a magic coordinate system governing the grow points of the plants. In this coordinate system with x and y axes, no two plants share the same x or y
An M11 needs to eat exactly one plant in each day to stay alive. When it eats one plant, it remains there for the rest of the day with no move. Next day, it looks for another plant to go there and eat it. If it can not reach any other plant it dies by the end of the day. Notice that it can reach a plant in any distance. 
The problem is to find a path for an M11 to let it live longest. 
Input is a set of (x, y) coordinates of plants. Suppose A with the coordinates (xA, yA) is the plant with the least y-coordinate. M11 starts from point (0,yA) heading towards plant A. Notice that the solution path should not cross itself and all of the turns should be counter-clockwise. Also note that the solution may visit more than two plants located on a same straight line. 

Input

The first line of the input is M, the number of test cases to be solved (1 <= M <= 10). For each test case, the first line is N, the number of plants in that test case (1 <= N <= 50), followed by N lines for each plant data. Each plant data consists of three integers: the first number is the unique plant index (1..N), followed by two positive integers x and y representing the coordinates of the plant. Plants are sorted by the increasing order on their indices in the input file. Suppose that the values of coordinates are at most 100.

Output

Output should have one separate line for the solution of each test case. A solution is the number of plants on the solution path, followed by the indices of visiting plants in the path in the order of their visits.

Sample Input

2
10
1 4 5
2 9 8
3 5 9
4 1 7
5 3 2
6 6 3
7 10 10
8 8 1
9 2 4
10 7 6
14
1 6 11
2 11 9
3 8 7
4 12 8
5 9 20
6 3 2
7 1 6
8 2 13
9 15 1
10 14 17
11 13 19
12 5 18
13 7 3
14 10 16

Sample Output

10 8 7 3 4 9 5 6 2 1 10
14 9 10 11 5 12 8 7 6 13 4 14 1 3 2
/*
poj 1696 叉积理解 给你n个点,要求从一个点出发,每次只能 左or直走. 求路径
先找出最做下角的点,然后通过叉积排序判断出离当前点需要旋转最小角度可以到达的点
如果两个点在一条直线上面,则选取距离最近的 hhh-2016-05-06 20:40:31
*/
#include <iostream>
#include <vector>
#include <cstring>
#include <string>
#include <cstdio>
#include <queue>
#include <cmath>
#include <algorithm>
#include <functional>
#include <map>
using namespace std;
#define lson (i<<1)
#define rson ((i<<1)|1) using namespace std;
const int maxn = 40010;
double eps = 1e-8;
int tot;
int n,m; int sgn(double x)
{
if(fabs(x) < eps) return 0;
if(x < 0)
return -1;
else
return 1;
} struct Point
{
int id;
double x,y;
Point() {}
Point(double _x,double _y)
{
x = _x,y = _y;
}
Point operator -(const Point &b)const
{
return Point(x-b.x,y-b.y);
}
double operator ^(const Point &b)const
{
return x*b.y-y*b.x;
}
double operator *(const Point &b)const
{
return x*b.x + y*b.y;
}
}; struct Line
{
Point s,t;
Line() {}
Line(Point _s,Point _t)
{
s = _s;
t = _t;
}
pair<int,Point> operator &(const Line&b)const
{
Point res = s;
if( sgn((s-t) ^ (b.s-b.t)) == 0) //通过叉积判断
{
if( sgn((s-b.t) ^ (b.s-b.t)) == 0)
return make_pair(0,res);
else
return make_pair(1,res);
}
double ta = ((s-b.s)^(b.s-b.t))/((s-t)^(b.s-b.t));
res.x += (t.x-s.x)*ta;
res.y += (t.y-s.y)*ta;
return make_pair(2,res);
}
};
Point tp;
Point po[maxn]; double dist(Point a,Point b)
{
return sqrt((a-b)*(a-b));
} bool cmp(Point a,Point b)
{
double t = (a-tp)^(b-tp);
if(sgn(t) == 0)
{
return dist(a,tp) < dist(b,tp);
}
if(sgn(t) < 0)
return false;
else
return true;
} int main()
{
int n,T;
scanf("%d",&T);
while(T--)
{
scanf("%d", &n);
tp.x = 10000,tp.y = 10000;
for(int i = 0; i < n; i++)
{
scanf("%d%lf%lf",&po[i].id,&po[i].x,&po[i].y);
if(po[i].y < tp.y || (po[i].y == tp.y && po[i].x < tp.x))
{
tp = po[i];
}
} for(int i = 0; i < n; i++)
{
sort(po+i,po+n,cmp);
tp = po[i];
}
printf("%d ",n);
for(int i = 0; i < n; i++)
{
printf("%d%c",po[i].id, i == n-1 ? '\n':' ');
}
}
return 0;
}

  

poj 1696 叉积理解的更多相关文章

  1. poj 2318 叉积+二分

    TOYS Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 13262   Accepted: 6412 Description ...

  2. poj 1696 (计算几何基础)

    poj 1696 Space Ant 链接:http://poj.org/problem?id=1696 题意:在坐标轴上,给定n个点的 id 以及点的坐标(xi, yi),让你以最底端点开始,从右依 ...

  3. poj 1696 Space Ant(模拟+叉积)

    Space Ant Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 3840   Accepted: 2397 Descrip ...

  4. POJ 1696 Space Ant 极角排序(叉积的应用)

    题目大意:给出n个点的编号和坐标,按逆时针方向连接着n个点,按连接的先后顺序输出每个点的编号. 题目思路:Cross(a,b)表示a,b的叉积,若小于0:a在b的逆时针方向,若大于0a在b的顺时针方向 ...

  5. POJ 1696 - Space Ant 凸包的变形

    Technorati Tags: POJ,计算几何,凸包 初学计算几何,引入polygon后的第一个挑战--凸包 此题可用凸包算法做,只要把压入凸包的点从原集合中排除即可,最终形成图形为螺旋线. 关于 ...

  6. 简单几何(凸包) POJ 1696 Space Ant

    题目传送门 题意:一个蚂蚁一直往左边走,问最多能走多少步,且输出路径 分析:就是凸包的变形题,凸包性质,所有点都能走.从左下角开始走,不停排序.有点纠结,自己的凸包不能AC.待理解透凸包再来写.. 好 ...

  7. poj 1696 Space Ant (极角排序)

    链接:http://poj.org/problem?id=1696 Space Ant Time Limit: 1000MS   Memory Limit: 10000K Total Submissi ...

  8. 补充一下我对 POJ 3273 的理解,这肯定是我一生写的最多的题解。。。

    题目:http://poj.org/problem?id=3273 当分成的组数越多,所有组的最大值就会越小或不变,这一点不难证明:    如果当前分成了group组,最大值是max,那么max的这一 ...

  9. POJ 1696 Space Ant(点积的应用)

    Space Ant 大意:有一仅仅蚂蚁,每次都仅仅向当前方向的左边走,问蚂蚁走遍全部的点的顺序输出.開始的点是纵坐标最小的那个点,開始的方向是開始点的x轴正方向. 思路:从開始点開始,每次找剩下的点中 ...

随机推荐

  1. 利用Python爬取新浪微博营销案例库并下载到本地

    from bs4 import BeautifulSoup import requests,urllib.request,urllib.parse import json import time im ...

  2. Scrum 冲刺 第六日

    Scrum 冲刺 第六日 目录 要求 项目链接 燃尽图 问题 今日任务 明日计划 成员贡献量 要求 各个成员今日完成的任务(如果完成的任务为开发或测试任务,需给出对应的Github代码签入记录截图:如 ...

  3. NetFPGA Demo ——reference_router_nf1_cml

    NetFPGA Demo --reference_router_nf1_cml 前言 本博文主要介绍了reference_router_nf1_cml该demo的一路运行,以及一路上艰难跑通遇到的坑. ...

  4. IOS webview iframe 宽度超出屏幕解决方案

    IOS 真机webview中,iframe 却不能很好地适应屏幕大小,总是超出屏幕尺寸,需要左右滚动才能看到完整页面. <div style="overflow: auto;-webk ...

  5. bzoj千题计划242:bzoj4034: [HAOI2015]树上操作

    http://www.lydsy.com/JudgeOnline/problem.php?id=4034 dfs序,树链剖分 #include<cstdio> #include<io ...

  6. cookieUtil

    public class CookieUtil { /** * 设置cookie * @param name cookie名字 * @param value cookie值 * @param maxA ...

  7. 零基础大数据入门教程:Java调用阿里云短信通道服务

    这里我们使用SpringBoot 来调用阿里通信的服务. 阿里通信,双11.收到短信,日发送达6亿条.保障力度非常高. 使用的步骤: 1.1. 第一步:需要开通账户 1.2. 第二步:阅读接口文档 1 ...

  8. kafka和mqtt的区别是什么?

    两者都是从传统的Pub/Sub消息系统演化出来的,但是进化方向不一样,比较如下: Kafka是为了数据集成的场景,与以往Pub/Sub消息总线不一样,通过分布式架构提供了海量消息处理.高容错的方式存储 ...

  9. spring-oauth-server实践:客户端和服务端环境搭建

    客户端:http://localhost:8080/spring-oauth-client/index.jsp 服务端:http://localhost:8080/spring-oauth-serve ...

  10. 新概念英语(1-39)Don't drop it!

    新概念英语(1-39)Don't drop it! Where does Sam put the vase in the end ? A:What are you going to do with t ...