4034: [HAOI2015]树上操作

Time Limit: 10 Sec  Memory Limit: 256 MB
Submit: 6163  Solved: 2025
[Submit][Status][Discuss]

Description

有一棵点数为 N 的树,以点 1 为根,且树点有边权。然后有 M 个

操作,分为三种:

操作 1 :把某个节点 x 的点权增加 a 。

操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 a 。

操作 3 :询问某个节点 x 到根的路径中所有点的点权和。

Input

第一行包含两个整数 N, M 。表示点数和操作数。接下来一行 N 个整数,表示树中节点的初始权值。接下来 N-1 

行每行三个正整数 fr, to , 表示该树中存在一条边 (fr, to) 。再接下来 M 行,每行分别表示一次操作。其中

第一个数表示该操作的种类( 1-3 ) ,之后接这个操作的参数( x 或者 x a ) 。

Output

对于每个询问操作,输出该询问的答案。答案之间用换行隔开。

Sample Input

5 5
1 2 3 4 5
1 2
1 4
2 3
2 5
3 3
1 2 1
3 5
2 1 2
3 3

Sample Output

6
9
13

HINT

对于 100% 的数据, N,M<=100000 ,且所有输入数据的绝对值都不会超过 10^6 。

Source

鸣谢bhiaibogf提供

需要注意的是子树整体加减
可以发现,一棵子树一定是一段连续区间
树链剖分的时候记录in[x]和out[x], 夹在它们之间的就是x子树区间

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#define ll long long
#define ls u<<1
#define rs ls|1
#define N 100050
using namespace std;
int n,m,tot,cnt,in[N],out[N],hd[N],fa[N],val[N];
int dep[N],v[N],son[N],siz[N],tid[N],tp[N];ll sum[N<<2],lz[N<<2];
struct edge{int v,next;}e[N<<1];
void adde(int u,int v){
e[++tot].v=v;
e[tot].next=hd[u];
hd[u]=tot;
}
void dfs1(int u,int pre){
fa[u]=pre;dep[u]=dep[pre]+1;siz[u]=1;
for(int i=hd[u];i;i=e[i].next){
int v=e[i].v;
if(v==pre)continue;
dfs1(v,u);siz[u]+=siz[v];
if(siz[v]>siz[son[u]])son[u]=v;
}
}
void dfs2(int u,int anc){
if(!u)return;
tid[u]=++cnt;v[cnt]=val[u];
in[u]=cnt;tp[u]=anc;
dfs2(son[u],anc);
for(int i=hd[u];i;i=e[i].next){
int v=e[i].v;
if(v==fa[u]||v==son[u])continue;
dfs2(v,v);
}
out[u]=cnt;
}
void pushup(int u){sum[u]=sum[ls]+sum[rs];}
void pushdown(int u,int l,int r){
if(!lz[u])return;
int mid=l+r>>1;ll x=lz[u];
lz[ls]+=x;lz[rs]+=x;
sum[ls]+=x*(mid-l+1);
sum[rs]+=x*(r-mid);
lz[u]=0;
}
void build(int u,int l,int r){
if(l==r){
sum[u]=v[l];
return;
}
int mid=l+r>>1;
build(ls,l,mid);
build(rs,mid+1,r);
pushup(u);
}
void update(int u,int L,int R,int l,int r,int w){
if(l<=L&&R<=r){
sum[u]+=1ll*w*(R-L+1);
lz[u]+=w;return;
}
pushdown(u,L,R);
int mid=L+R>>1;
if(l<=mid)update(ls,L,mid,l,r,w);
if(r>mid)update(rs,mid+1,R,l,r,w);
pushup(u);
}
ll query(int u,int L,int R,int l,int r){
if(l<=L&&R<=r)return sum[u];
pushdown(u,L,R);
int mid=L+R>>1;ll ret=0;
if(l<=mid)ret+=query(ls,L,mid,l,r);
if(r>mid)ret+=query(rs,mid+1,R,l,r);
return ret;
}
ll jump(int x,int y){
int fx=tp[x],fy=tp[y];
ll ret=0;
while(fx!=fy){
if(dep[fx]<dep[fy]){
swap(fx,fy);
swap(x,y);
}
ret+=query(1,1,cnt,tid[fx],tid[x]);
x=fa[fx];fx=tp[x];
}
if(dep[x]>dep[y])swap(x,y);
ret+=query(1,1,cnt,tid[x],tid[y]);
return ret;
}
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)scanf("%d",&val[i]);
for(int i=1;i<n;i++){
int a,b;
scanf("%d%d",&a,&b);
adde(a,b);adde(b,a);
}
dfs1(1,0);dfs2(1,1);
build(1,1,cnt);
int op,a,b;
while(m--){
scanf("%d",&op);
if(op==1){
scanf("%d%d",&a,&b);
update(1,1,cnt,tid[a],tid[a],b);
}
if(op==2){
scanf("%d%d",&a,&b);
update(1,1,cnt,in[a],out[a],b);
}
if(op==3){
scanf("%d",&a);
printf("%lld\n",jump(a,1));
}
}
return 0;
}

bzoj4034[HAOI2015]树上操作 树链剖分+线段树的更多相关文章

  1. BZOJ.4034 [HAOI2015]树上操作 ( 点权树链剖分 线段树 )

    BZOJ.4034 [HAOI2015]树上操作 ( 点权树链剖分 线段树 ) 题意分析 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 ...

  2. bzoj4034 (树链剖分+线段树)

    Problem T2 (bzoj4034 HAOI2015) 题目大意 给定一颗树,1为根节点,要求支持三种操作. 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子 ...

  3. 【BZOJ-2325】道馆之战 树链剖分 + 线段树

    2325: [ZJOI2011]道馆之战 Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 1153  Solved: 421[Submit][Statu ...

  4. BZOJ2243 (树链剖分+线段树)

    Problem 染色(BZOJ2243) 题目大意 给定一颗树,每个节点上有一种颜色. 要求支持两种操作: 操作1:将a->b上所有点染成一种颜色. 操作2:询问a->b上的颜色段数量. ...

  5. 【POJ3237】Tree(树链剖分+线段树)

    Description You are given a tree with N nodes. The tree’s nodes are numbered 1 through N and its edg ...

  6. B20J_3231_[SDOI2014]旅行_树链剖分+线段树

    B20J_3231_[SDOI2014]旅行_树链剖分+线段树 题意: S国有N个城市,编号从1到N.城市间用N-1条双向道路连接,城市信仰不同的宗教,为了方便,我们用不同的正整数代表各种宗教. S国 ...

  7. 洛谷P4092 [HEOI2016/TJOI2016]树 并查集/树链剖分+线段树

    正解:并查集/树链剖分+线段树 解题报告: 传送门 感觉并查集的那个方法挺妙的,,,刚好又要复习下树剖了,所以就写个题解好了QwQ 首先说下并查集的方法趴QwQ 首先离线,读入所有操作,然后dfs遍历 ...

  8. BZOJ4551[Tjoi2016&Heoi2016]树——dfs序+线段树/树链剖分+线段树

    题目描述 在2016年,佳媛姐姐刚刚学习了树,非常开心.现在他想解决这样一个问题:给定一颗有根树(根为1),有以下 两种操作:1. 标记操作:对某个结点打上标记(在最开始,只有结点1有标记,其他结点均 ...

  9. BZOJ2325[ZJOI2011]道馆之战——树链剖分+线段树

    题目描述 口袋妖怪(又名神奇宝贝或宠物小精灵)红/蓝/绿宝石中的水系道馆需要经过三个冰地才能到达馆主的面前,冰地中 的每一个冰块都只能经过一次.当一个冰地上的所有冰块都被经过之后,到下一个冰地的楼梯才 ...

  10. fzu 2082 过路费 (树链剖分+线段树 边权)

    Problem 2082 过路费 Accept: 887    Submit: 2881Time Limit: 1000 mSec    Memory Limit : 32768 KB  Proble ...

随机推荐

  1. python 操作Memcached

    启动Memcached memcached -d -m 10 -u root -l 10.211.55.4 -p 12000 -c 256 -P /tmp/memcached.pid 参数说明: -d ...

  2. img加载卡顿,解决办法

    我觉得我在这个项目里遇到了太多的第一次.比如上一篇博文:在在360.UC等浏览器,img不加载原因. 当前情况是:图片加载缓慢,图片加载时出现卡顿. 上图:我缩放了图片,估计有点变形.能说明情况就行, ...

  3. nyoj 阶乘0

    阶乘的0 时间限制:3000 ms  |  内存限制:65535 KB 难度:3   描述 计算n!的十进制表示最后有多少个0   输入 第一行输入一个整数N表示测试数据的组数(1<=N< ...

  4. github入门:设置添加ssh key<转>

    GitHub是个分布式的版本控制库.github通过git使用,可以方便的记录代码版本. 通过github可以学习优秀的代码,可以改进提交其他项目中的bug,借助社区力量促进软件优化完善. 国内外大量 ...

  5. spring-oauth-server实践:使用授权方式四:client_credentials 模式的客户端和服务端交互

    spring-oauth-server入门(1-11)使用授权方式四:client_credentials 模式的客戶端 一.客户端逻辑 1.界面入口(credentials_access_token ...

  6. 云+社区技术沙龙:Kafka meetup 深圳站报名开启

    欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 如果说 2018 年是技术大爆炸年,那么 Apache Kafka 绝对是其中闪亮的新星. 自Kafka 从首发之日起,已经走过了快八个年头 ...

  7. Java面向对象之构造函数 入门实例

    一.基础概念 1.什么时候定义构造函数: 当对象创建时,需要对象必须具备的内容,通过构造函数完成. 2.一般函数和构造函数的区别: 定义上:构造函数只为对象的初始化,只执行一次.一般函数定义对象应该具 ...

  8. centos单机安装zookeeper+kafaka

    环境如下: CentOS-7-x86_64zookeeper-3.4.11kafka_2.12-1.1.0 一.zookeeper下载与安装1)下载zookeeper [root@localhost ...

  9. 什么是web框架

    什么是web框架 web应用框架是支持动态网站.网络应用程序的软件框架. web框架的工作方式:接收http请求并处理,分派代码, 产生html,创建http响应. web框架 通常包含了:url路由 ...

  10. html2canvas 实现dashed虚线边框

    html2canvas是一个将html元素生成canvas的库,绘制的canvas大部分样式和CSS一致.比如截止1.0.0-alpha.12,虚线边框依然绘制为实线,border-collapse依 ...