bzoj4034[HAOI2015]树上操作 树链剖分+线段树
4034: [HAOI2015]树上操作
Time Limit: 10 Sec Memory Limit: 256 MB
Submit: 6163 Solved: 2025
[Submit][Status][Discuss]
Description
有一棵点数为 N 的树,以点 1 为根,且树点有边权。然后有 M 个
操作,分为三种:
操作 1 :把某个节点 x 的点权增加 a 。
操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 a 。
操作 3 :询问某个节点 x 到根的路径中所有点的点权和。
Input
第一行包含两个整数 N, M 。表示点数和操作数。接下来一行 N 个整数,表示树中节点的初始权值。接下来 N-1
行每行三个正整数 fr, to , 表示该树中存在一条边 (fr, to) 。再接下来 M 行,每行分别表示一次操作。其中
第一个数表示该操作的种类( 1-3 ) ,之后接这个操作的参数( x 或者 x a ) 。
Output
对于每个询问操作,输出该询问的答案。答案之间用换行隔开。
Sample Input
5 5
1 2 3 4 5
1 2
1 4
2 3
2 5
3 3
1 2 1
3 5
2 1 2
3 3
Sample Output
6
9
13
HINT
对于 100% 的数据, N,M<=100000 ,且所有输入数据的绝对值都不会超过 10^6 。
Source
需要注意的是子树整体加减
可以发现,一棵子树一定是一段连续区间
树链剖分的时候记录in[x]和out[x], 夹在它们之间的就是x子树区间
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#define ll long long
#define ls u<<1
#define rs ls|1
#define N 100050
using namespace std;
int n,m,tot,cnt,in[N],out[N],hd[N],fa[N],val[N];
int dep[N],v[N],son[N],siz[N],tid[N],tp[N];ll sum[N<<2],lz[N<<2];
struct edge{int v,next;}e[N<<1];
void adde(int u,int v){
e[++tot].v=v;
e[tot].next=hd[u];
hd[u]=tot;
}
void dfs1(int u,int pre){
fa[u]=pre;dep[u]=dep[pre]+1;siz[u]=1;
for(int i=hd[u];i;i=e[i].next){
int v=e[i].v;
if(v==pre)continue;
dfs1(v,u);siz[u]+=siz[v];
if(siz[v]>siz[son[u]])son[u]=v;
}
}
void dfs2(int u,int anc){
if(!u)return;
tid[u]=++cnt;v[cnt]=val[u];
in[u]=cnt;tp[u]=anc;
dfs2(son[u],anc);
for(int i=hd[u];i;i=e[i].next){
int v=e[i].v;
if(v==fa[u]||v==son[u])continue;
dfs2(v,v);
}
out[u]=cnt;
}
void pushup(int u){sum[u]=sum[ls]+sum[rs];}
void pushdown(int u,int l,int r){
if(!lz[u])return;
int mid=l+r>>1;ll x=lz[u];
lz[ls]+=x;lz[rs]+=x;
sum[ls]+=x*(mid-l+1);
sum[rs]+=x*(r-mid);
lz[u]=0;
}
void build(int u,int l,int r){
if(l==r){
sum[u]=v[l];
return;
}
int mid=l+r>>1;
build(ls,l,mid);
build(rs,mid+1,r);
pushup(u);
}
void update(int u,int L,int R,int l,int r,int w){
if(l<=L&&R<=r){
sum[u]+=1ll*w*(R-L+1);
lz[u]+=w;return;
}
pushdown(u,L,R);
int mid=L+R>>1;
if(l<=mid)update(ls,L,mid,l,r,w);
if(r>mid)update(rs,mid+1,R,l,r,w);
pushup(u);
}
ll query(int u,int L,int R,int l,int r){
if(l<=L&&R<=r)return sum[u];
pushdown(u,L,R);
int mid=L+R>>1;ll ret=0;
if(l<=mid)ret+=query(ls,L,mid,l,r);
if(r>mid)ret+=query(rs,mid+1,R,l,r);
return ret;
}
ll jump(int x,int y){
int fx=tp[x],fy=tp[y];
ll ret=0;
while(fx!=fy){
if(dep[fx]<dep[fy]){
swap(fx,fy);
swap(x,y);
}
ret+=query(1,1,cnt,tid[fx],tid[x]);
x=fa[fx];fx=tp[x];
}
if(dep[x]>dep[y])swap(x,y);
ret+=query(1,1,cnt,tid[x],tid[y]);
return ret;
}
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)scanf("%d",&val[i]);
for(int i=1;i<n;i++){
int a,b;
scanf("%d%d",&a,&b);
adde(a,b);adde(b,a);
}
dfs1(1,0);dfs2(1,1);
build(1,1,cnt);
int op,a,b;
while(m--){
scanf("%d",&op);
if(op==1){
scanf("%d%d",&a,&b);
update(1,1,cnt,tid[a],tid[a],b);
}
if(op==2){
scanf("%d%d",&a,&b);
update(1,1,cnt,in[a],out[a],b);
}
if(op==3){
scanf("%d",&a);
printf("%lld\n",jump(a,1));
}
}
return 0;
}
bzoj4034[HAOI2015]树上操作 树链剖分+线段树的更多相关文章
- BZOJ.4034 [HAOI2015]树上操作 ( 点权树链剖分 线段树 )
BZOJ.4034 [HAOI2015]树上操作 ( 点权树链剖分 线段树 ) 题意分析 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 ...
- bzoj4034 (树链剖分+线段树)
Problem T2 (bzoj4034 HAOI2015) 题目大意 给定一颗树,1为根节点,要求支持三种操作. 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子 ...
- 【BZOJ-2325】道馆之战 树链剖分 + 线段树
2325: [ZJOI2011]道馆之战 Time Limit: 40 Sec Memory Limit: 256 MBSubmit: 1153 Solved: 421[Submit][Statu ...
- BZOJ2243 (树链剖分+线段树)
Problem 染色(BZOJ2243) 题目大意 给定一颗树,每个节点上有一种颜色. 要求支持两种操作: 操作1:将a->b上所有点染成一种颜色. 操作2:询问a->b上的颜色段数量. ...
- 【POJ3237】Tree(树链剖分+线段树)
Description You are given a tree with N nodes. The tree’s nodes are numbered 1 through N and its edg ...
- B20J_3231_[SDOI2014]旅行_树链剖分+线段树
B20J_3231_[SDOI2014]旅行_树链剖分+线段树 题意: S国有N个城市,编号从1到N.城市间用N-1条双向道路连接,城市信仰不同的宗教,为了方便,我们用不同的正整数代表各种宗教. S国 ...
- 洛谷P4092 [HEOI2016/TJOI2016]树 并查集/树链剖分+线段树
正解:并查集/树链剖分+线段树 解题报告: 传送门 感觉并查集的那个方法挺妙的,,,刚好又要复习下树剖了,所以就写个题解好了QwQ 首先说下并查集的方法趴QwQ 首先离线,读入所有操作,然后dfs遍历 ...
- BZOJ4551[Tjoi2016&Heoi2016]树——dfs序+线段树/树链剖分+线段树
题目描述 在2016年,佳媛姐姐刚刚学习了树,非常开心.现在他想解决这样一个问题:给定一颗有根树(根为1),有以下 两种操作:1. 标记操作:对某个结点打上标记(在最开始,只有结点1有标记,其他结点均 ...
- BZOJ2325[ZJOI2011]道馆之战——树链剖分+线段树
题目描述 口袋妖怪(又名神奇宝贝或宠物小精灵)红/蓝/绿宝石中的水系道馆需要经过三个冰地才能到达馆主的面前,冰地中 的每一个冰块都只能经过一次.当一个冰地上的所有冰块都被经过之后,到下一个冰地的楼梯才 ...
- fzu 2082 过路费 (树链剖分+线段树 边权)
Problem 2082 过路费 Accept: 887 Submit: 2881Time Limit: 1000 mSec Memory Limit : 32768 KB Proble ...
随机推荐
- 深度学习之 GAN 进行 mnist 图片的生成
深度学习之 GAN 进行 mnist 图片的生成 mport numpy as np import os import codecs import torch from PIL import Imag ...
- keycloak管理用户权限
一.在keycloak中定义基础数据 1.realm 如果多个模块使用不同的用户权限,就分realm 如果多个模块共用一套用户权限,就顶一个一个realm 2.每个模块是一个client-app 3. ...
- api-gateway实践(15)3.6JL分支和3.7并行改造需求
一.名称改为"API网关" --哪个地方的名称?二.开发者视图中,API网关显示两个视图. 1. 服务分类视图:支持按照业务分为多个类别,分类方式参照应用服务化的分类:人像比对.自 ...
- SpringCloud的Archaius - 动态管理属性配置
参考链接:http://www.th7.cn/Program/java/201608/919853.shtml 一.Archaius是什么? Archaius用于动态管理属性配置文件. 参考自Gett ...
- apigw鉴权分析(1-5)亚马逊 - 鉴权分析
一.访问入口 https://developer.amazon.com/public/zh 二.鉴权方式分析 三.分解结论
- spring7——AOP之通知和顾问
通知和顾问都是切面的实现形式,其中通知可以完成对目标对象方法简单的织入功能. 而顾问包装了通知,可以让我们对通知实现更加精细化的管理,让我们可以指定具体的切入点. 通知分为前置通知,环绕通知及后置通知 ...
- Python3安装Requests
安装Requests费了1天的时间,囧.终于还是在官网找到解决方法,可以参考这个http://docs.python-requests.org/en/latest/user/install/#inst ...
- js常用的数组方法
1.创建数组的基本方法: 1.1 空数组 var obj=new Array(); 1.2 指定长度数组 var obj=new Array(size); ...
- java设计模式—— 工厂模式
菜鸡互啄... 工厂模式通过定义一个创建对象的接口,让其子类决定实例化哪个工厂类.因此我们要解决接口选择的问题,实现不同的计划创建不同的对象. 首先我们定义一个轿车接口 public interfac ...
- php程序报错:PHP Core Warning/cannot open shared object file: No such file or directory
今天开发调试程序的时候报错了,现象是有时候刷新会出现如下图: 这种主要是找不到共享库文件,即.so文件,网上主要有3种解决方法: 1. 用ln将需要的so文件链接到/usr/lib或者/lib这两个默 ...