CF698C. LRU

题意:n种物品,大小为k的队列,\(p_i\)的概率选择第i种物品放入队尾,如果已经有i了就不放了。队列大小>k时弹出队首。求\(10^{100}\)次操作后每种物品在队列里的概率


为什么没有官方题解啊,所以看了讨论区的题解

一开始想的是,一个元素在队列里,说明后来加入的元素种类<k,对于每种物品i,求出每个\(|S| =0…k-1 : i \notin S\)的集合出现在i右面的概率就行了。但这时候要求的是\(S\)中每种物品至少出现1次,至多无限次,只是简单的乘上\(\prod\limits_{i \in S}p_i\) 再乘上 \(\frac{1}{1-x}\)是不对的。

所以考虑容斥原理,求出\(S\)的任意子集出现的概率。

求这个概率很简单,每种元素可以不出现,设\(x=\sum\limits_{i \in S}p_i\),那么

\(P=x+x^2+...+x^{\infty}=\frac{1}{1-x}\)

根据容斥原理,\(i\)的答案就是

\[\le k-1种元素的集合出现的概率\ -\ \le k-2种元素的集合出现的概率*容斥系数\ +\ ...
\]

和之前的恰好k个问题一样,这个容斥系数需要乘上超集的个数,比如大小为\(i\)的集合,他的大小为\(j\)的超集的个数是\(\binom{n-1-i}{j-i}\),注意是\(n-1\)因为当前计算答案的元素不能选

需要注意的是,我们要同时求恰好\(0...k-1\)个,所以每个的容斥系数都要+1,并且要处理之前所有大小的超集

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N=21, M=(1<<20)+5;
inline int read(){
char c=getchar();int x=0,f=1;
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
return x*f;
} int n, k, c[N][N];
double p[N], sum[M], coe[N], g[M];
inline int one(int x) { int c=0; while(x) x&=x-1, c++; return c; } int main() {
freopen("in","r",stdin);
n=read(); k=read();
for(int i=0; i<n; i++) scanf("%lf",&p[i]), sum[1<<i] = p[i];
c[0][0]=1;
for(int i=1; i<=n; i++) {
c[i][0]=1;
for(int j=1; j<=i; j++) c[i][j] = c[i-1][j] + c[i-1][j-1];
} int all=1<<n;
for(int i=0; i<all; i++) if(!sum[i]) sum[i] = sum[i&-i] + sum[i^(i&-i)];
for(int i=k-1; i>=0; i--) {
coe[i] = 1;
for(int j=i+1; j<=k-1; j++) coe[i] -= coe[j] * c[n-1-i][j-i];
//printf("coe %d %lf\n",i,coe[i]);
} for(int i=0; i<n; i++) {
if(p[i]==0 || p[i]==1 || k==1) {printf("%.9lf ", p[i]); continue;}
double ans=0;
for(int s=0; s<all; s++)
if(!((1<<i) & s) && one(s)<=k-1) ans += coe[one(s)]/(1-sum[s]);// printf("s %d %lf\n",s, ans);
printf("%.9lf ", p[i]*ans);
}
}

CF698C. LRU [容斥原理 概率]的更多相关文章

  1. CF698C - LRU

    这又是什么毒瘤..... 解:把操作序列倒着来,就是考虑前k个入队的元素了.显然这样每个元素的概率不变. 状压.设fs表示当前元素为s的概率. 每次转移的时候选择一个不在s中的元素,作为下一个加入的元 ...

  2. hdu4336 Card Collector 概率dp(或容斥原理?)

    题意: 买东西集齐全套卡片赢大奖.每个包装袋里面有一张卡片或者没有. 已知每种卡片出现的概率 p[i],以及所有的卡片种类的数量 n(1<=n<=20). 问集齐卡片需要买东西的数量的期望 ...

  3. Codeforces Round #363 LRU(概率 状压DP)

    状压DP: 先不考虑数量k, dp[i]表示状态为i的概率,状态转移方程为dp[i | (1 << j)] += dp[i],最后考虑k, 状态表示中1的数量为k的表示可行解. #incl ...

  4. 51Nod 1667 概率好题 - 容斥原理

    题目传送门 无障碍通道 有障碍通道 题目大意 若$L_{i}\leqslant x_{i} \leqslant R_{i}$,求$\sum x_{i} = 0$以及$\sum x_{i} < 0 ...

  5. BZOJ4036 HAOI2015按位或(概率期望+容斥原理)

    考虑min-max容斥,改为求位集合内第一次有位变成1的期望时间.求出一次操作选择了S中的任意1的概率P[S],期望时间即为1/P[S]. 考虑怎么求P[S].P[S]=∑p[s] (s&S& ...

  6. LOJ2541 PKUWC2018猎人杀(概率期望+容斥原理+生成函数+分治NTT)

    考虑容斥,枚举一个子集S在1号猎人之后死.显然这个概率是w1/(Σwi+w1) (i∈S).于是我们统计出各种子集和的系数即可,造出一堆形如(-xwi+1)的生成函数,分治NTT卷起来就可以了. #i ...

  7. 2018.08.31 bzoj3566: [SHOI2014]概率充电器(概率dp+容斥原理)

    传送门 概率dp好题啊. 用f[i]" role="presentation" style="position: relative;">f[i] ...

  8. [LibreOJ 3124]【CTS2019】氪金手游【容斥原理】【概率】【树形DP】

    Description Solution 首先它的限制关系是一个树形图 首先考虑如果它是一个外向树该怎么做. 这是很简单的,我们相当于每个子树的根都是子树中最早出现的点,概率是容易计算的. 设DP状态 ...

  9. [LOJ3124][CTS2019|CTSC2019]氪金手游:树形DP+概率DP+容斥原理

    分析 首先容易得出这样一个事实,在若干物品中最先被选出的是编号为\(i\)的物品的概率为\(\frac{W_i}{\sum_{j=1}^{cnt}W_j}\). 假设树是一棵外向树,即父亲比儿子先选( ...

随机推荐

  1. c++工程重复编译与重复定义

    #ifndef #define #endif防止的是"重复编译",而不是"重复定义"重复编译可能造成重复定义,但重复定义的来源不只有重复编译从代码变成可执行的程 ...

  2. #if defined、#if !defined用法

    大型程序或者修改别人的程序时,当我们需要定义常量(源文件还是头文件 ),我们就必须返回检查原来此常量是否已经定义, if defined宏 就是用于检测的. 举个例子,如下: #define .... ...

  3. Spring学习日志之Spring MVC启动配置

    对DispatcherServlet进行配置 Spring MVC的配置实际上就是对DispatcherServlet的配置 public class DispatcherServletConfig ...

  4. RPM挂载光盘(使用iso里面的来搭建yum环境)就是离线模式,

    找到光盘的完整路径名.在命令行输入:ls -l /dev | grep cdrom.   可以看到光盘的名字叫做:cdrom1.然后在命令行执行: mount /dev/cdrom1    /mnt/ ...

  5. 使用bat将优盘中的dig加到系统环境变量

    第一次使用bat批处理,记录下,方便查阅. @echo off::当前盘符set curPath=%cd%set digPath ="%curPath%tool\dig"set P ...

  6. Flexbox学习总结

    flex语法 采用Flex布局的元素,称为Flex容器(flex container),简称"容器".它的所有子元素自动成为容器成员,称为Flex项目(flex item),简称& ...

  7. OKMX6Q在ltib生成的rootfs基础上制作带QT库的根文件系统

    ltib每次执行后会在其目录下生成rootfs目录,并以其为基础生成rootfs.ext2.gz文件,而litb自带的QT库又太老,所以想到按照飞凌的<OKMX6X-S2-Qt4.8.5移植手册 ...

  8. Mezzanine (Windows10下)安装配置与修改(更新中)

    最近自己搭个系统,发现Mezzanine很快,先搞个python 2.7, pip. 然后两个方法: 1. $ pip install mezzanine 2. Git下载,解压 后进入目录,创建项目 ...

  9. 爬虫利器BeautifulSoup模块使用

    一.简介 BeautifulSoup 是一个可以从HTML或XML文件中提取数据的Python库.它能够通过你喜欢的转换器实现惯用的文档导航,查找,修改文档的方式,同时应用场景也是非常丰富,你可以使用 ...

  10. C# 处理Word自动生成报告 三、设计模板

    C# 处理Word自动生成报告 一.概述 C# 处理Word自动生成报告 二.数据源例子 C# 处理Word自动生成报告 三.设计模板 C# 处理Word自动生成报告 四.程序处理 既然是模板就少不了 ...