https://www.codechef.com/problems/ANUCBC

n个数字,选出其一个子集。
求有多少子集满足其中数字之和是m的倍数。n $\le$ 100000,m $\le$ 100,最
多90组数据


傻逼题模数取什么1e9+9毁我一节课该死煞笔提

[15:13:47]刚刚心塞了一会儿出去跑了几步好点了,然后发现好像是生物老师在艺术楼走廊上给人讲题(今天好像有学校给成绩好的单独上课之类的活动,好多同学都来了艺术楼的一个教室了和机房隔一个拐角........)

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
const int N=1e5+,M=,INF=1e9+,P=1e9+;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int n,Q,m,a[N],d[M];
ll f[M][M],g[M];
ll inv[N];
inline void mod(ll &x){if(x>=P) x-=P;}
void dp(){
memset(f,,sizeof(f));
for(int i=;i<m;i++){
for(int j=;j<m;j++) g[j]=;
ll c=;
mod(g[]+=);
for(int j=;j<=d[i];j++){
c=c*(d[i]-j+)%P*inv[j]%P;
mod(g[i*j%m]+=c);
} if(i==) {f[][]=g[];continue;}
for(int j=;j<m;j++)
for(int k=;k<m;k++)
if(g[k]) mod(f[i][j]+=f[i-][(j-k+m)%m]*g[k]%P);
}
printf("%d\n",f[m-][]);
}
int main(){
freopen("in","r",stdin);
inv[]=;
for(int i=;i<=;i++) inv[i]=(P-P/i)*inv[P%i]%P;
int T=read();
while(T--){
n=read();Q=read();
for(int i=;i<=n;i++) a[i]=read();
while(Q--){
m=read();
for(int i=;i<m;i++) d[i]=;
for(int i=;i<=n;i++) d[(a[i]%m+m)%m]++;
dp();
}
}
return ;
}

CodeChef Cards, bags and coins [DP 泛型背包]的更多相关文章

  1. [CC-ANUCBC]Cards, bags and coins

    [CC-ANUCBC]Cards, bags and coins 题目大意: 给你\(n(n\le10^5)\)个数,\(q(q\le30)\)次询问,问从中选取若干个数使得这些数之和为\(m(m\l ...

  2. HDOJ(HDU).2844 Coins (DP 多重背包+二进制优化)

    HDOJ(HDU).2844 Coins (DP 多重背包+二进制优化) 题意分析 先把每种硬币按照二进制拆分好,然后做01背包即可.需要注意的是本题只需要求解可以凑出几种金钱的价格,而不需要输出种数 ...

  3. HDOJ(HDU).3466 Dividing coins ( DP 01背包 无后效性的理解)

    HDOJ(HDU).3466 Dividing coins ( DP 01背包 无后效性的理解) 题意分析 要先排序,在做01背包,否则不满足无后效性,为什么呢? 等我理解了再补上. 代码总览 #in ...

  4. Codechef APRIL14 ANUCBC Cards, bags and coins 背包DP变形

    题目大意 有n个数字,选出一个子集,有q个询问,求子集和模m等于0的方案数%1000000009.(n <= 100000,m <= 100,q <= 30) 假设数据很小,我们完全 ...

  5. UVA 562 Dividing coins(dp + 01背包)

    Dividing coins It's commonly known that the Dutch have invented copper-wire. Two Dutch men were figh ...

  6. POJ 1742 Coins DP 01背包

    dp[i][j]表示前i种硬币中取总价值为j时第i种硬币最多剩下多少个,-1表示无法到达该状态. a.当dp[i-1][j]>=0时,dp[i][j]=ci; b.当j-ai>=0& ...

  7. Codeforces Round #207 (Div. 1) D - Bags and Coins 构造 + bitset优化dp + 分段查找优化空间

    D - Bags and Coins 思路:我们可以这样构造,最大的那个肯定是作为以一个树根,所以我们只要找到一个序列a1 + a2 + a3 .... + ak 并且ak为 所有点中最大的那个,那么 ...

  8. USACO Money Systems Dp 01背包

    一道经典的Dp..01背包 定义dp[i] 为需要构造的数字为i 的所有方法数 一开始的时候是这么想的 for(i = 1; i <= N; ++i){ for(j = 1; j <= V ...

  9. 树形DP和状压DP和背包DP

    树形DP和状压DP和背包DP 树形\(DP\)和状压\(DP\)虽然在\(NOIp\)中考的不多,但是仍然是一个比较常用的算法,因此学好这两个\(DP\)也是很重要的.而背包\(DP\)虽然以前考的次 ...

随机推荐

  1. 微信小程序开发官方文档解读

    创建页面 在这个教程里,我们有两个页面,index 页面和 logs 页面,即欢迎页和小程序启动日志的展示页,他们都在 pages 目录下.微信小程序中的每一个页面的[路径+页面名]都需要写在 app ...

  2. 你必须知道的session与cookie

    Session本质 提到Session我们能联想到的就是用户登录功能,而本身我们使用Session的基础是通过url进行访问的,也就是使用http协议进行访问的,而http协议本身是无状态的,那么问题 ...

  3. win10安装配置jdk的环境变量

    换了个硬盘,用上了win10,发现win10安装好jdk之后,配置环境变量这个相对于win7和xp还是有那么一丢丢区别的,趁着夜色,随笔一记. 1.安装jdk之后,或者也可以用之前安装好的文件夹,先记 ...

  4. angularjs+ionic+'h5+'实现二维码扫描功能

    今天给大家分享一下基于angularjs与ionic框架实现手机二维码扫描的功能.没有用到cordova等任何插件,h5+实现的. 开发工具:hbuilder 首先,需要在hbuilder项目下面的配 ...

  5. Spring测试框架JUnit4.4 还蛮详细的

    TestContext 可以运行在 JUnit 3.8.JUnit 4.4.TestNG 等测试框架下. Spring的版本2.5+JUnit4.4+log4j1.2.12 @RunWith(Spri ...

  6. java中的左右移

    package scanner; public class LeftMove { public static void main(String[] args) { int i = 1; System. ...

  7. 捕获arm非托管磁盘虚拟机,并进行还原

    背景:非托管磁盘虚拟机"hlmcen69n1",附加了一块100GB的数据磁盘.由于arm非托管磁盘机器无法通过Portal界面直接"Capture",故只能通 ...

  8. linkin大话面向对象--包装类

    Java提倡的万物皆对象,但是数据类型的划分出现了基本数据类型和引用数据类型,那么我们怎么能把基本数据类型称为对象呢? 基本数据类型 包装类 byte Byte short Short int Int ...

  9. SuperMap iClient for JavaScript初入

    SuperMap iClient for JavaScript初入 介绍SuperMap for Js的简单使用. 推荐先看下这篇文档:SuperMap iClient for JavaScript ...

  10. C语言中函数可变参数解析

    大多数时候,函数中形式参数的数目通常是确定的,在调用时要依次给出与形式参数对应的所有实际参数.但在某些情况下希望函数的参数个数可以根据需要确定.典型的例子有 大家熟悉的函数printf().scanf ...