【BZOJ3884】上帝与集合的正确用法(欧拉定理,数论)
【BZOJ3884】上帝与集合的正确用法(欧拉定理,数论)
题面
题解
我们有欧拉定理:
当\(b \perp p\)时
\]
否则
当\(b≥\varphi(p)\)时
\]
这道题里面\(2\)的无穷次方显然会比\(\varphi(p)\)大
所以,递归调用这个公式
因此每次\(p\)都会变成\(\varphi(p)\)
所以,\(\varphi(p)\)必定会不断缩小
当其变成\(1\)的是否就不用再算下去了
直接返回\(0\)就好
回朔的时候快速幂算一下就可以啦
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
inline int read()
{
int x=0,t=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
ll phi(ll x)
{
ll ret=x;
for(int i=2;i*i<=x;++i)
if(x%i==0)
{
ret=ret/i*(i-1);
while(x%i==0)x/=i;
}
if(x>1)ret=ret/x*(x-1);
return ret;
}
ll fpow(ll a,ll b,ll p)
{
ll s=1;
while(b){if(b&1)s=1ll*s*a%p;a=1ll*a*a%p;b>>=1;}
return s;
}
ll Query(int P)
{
if(P==1)return 0;
ll x=phi(P);
return fpow(2,Query(x)+x,P);
}
int main()
{
int T=read();
while(T--)
printf("%lld\n",Query(read()));
return 0;
}
【BZOJ3884】上帝与集合的正确用法(欧拉定理,数论)的更多相关文章
- bzoj3884: 上帝与集合的正确用法(数论)
感觉是今天洛谷月赛T3的弱化版,会写洛谷T3之后这题一眼就会写了... 还是欧拉扩展定理 于是就在指数上递归%phi(p)+phi(p)直到1,则后面的指数就都没用了,这时候返回,边回溯边快速幂.因为 ...
- 【BZOJ3884】上帝与集合的正确用法 [欧拉定理]
上帝与集合的正确用法 Time Limit: 5 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description Input 第一行一个T ...
- BZOJ3884: 上帝与集合的正确用法 拓展欧拉定理
Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...
- BZOJ3884: 上帝与集合的正确用法(欧拉函数 扩展欧拉定理)
Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 3860 Solved: 1751[Submit][Status][Discuss] Descripti ...
- bzoj3884: 上帝与集合的正确用法 扩展欧拉定理
题意:求\(2^{2^{2^{2^{...}}}}\%p\) 题解:可以发现用扩展欧拉定理不需要很多次就能使模数变成1,后面的就不用算了 \(a^b\%c=a^{b\%\phi c} gcd(b,c) ...
- BZOJ3884 上帝与集合的正确用法 【欧拉定理】
题目 对于100%的数据,T<=1000,p<=10^7 题解 来捉这道神题 欧拉定理的一般形式: \[a^{m} \equiv a^{m \mod \varphi(p) + [m \ge ...
- bzoj3884上帝与集合的正确用法
Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...
- [BZOJ3884] 上帝与集合的正确用法 (欧拉函数)
题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=3884 题目大意: 给出 M, 求 $2^{2^{2^{2^{...}}}}$ % M ...
- bzoj3884 上帝与集合的正确用法
a^b mod P=a^(b mod phi(p)) mod p,利用欧拉公式递归做下去. 代码 #pragma comment(linker,"/STACK:1024000000,1024 ...
- bzoj3884: 上帝与集合的正确用法 欧拉降幂公式
欧拉降幂公式:http://blog.csdn.net/acdreamers/article/details/8236942 糖教题解处:http://blog.csdn.net/skywalkert ...
随机推荐
- R语言-广义线性模型
使用场景:结果变量是类别型,二值变量和多分类变量,不满足正态分布 结果变量是计数型,并且他们的均值和方差都是相关的 解决方法:使用广义线性模型,它包含费正太因变量的分析 1.Logistics回归( ...
- IQKeyboardManager 自动处理键盘事件的第三方库
我们写界面要考虑很多用户体验问题,键盘事件的响应就是比较麻烦的一种.我们需要监听键盘事件,考虑点击背景收起键盘.考虑键盘遮挡输入框问题等等,而且每个界面都要做这么一套.这个库帮我们解决了这个事情. 这 ...
- linux shell 执行远程命令
我在本地的shell脚本中,想要直接执行远程服务器的一个shell脚本: ssh -l root 192.168.1.1 "/data/t.sh" 记得提前给远程服务器的 /dat ...
- zabbix客户端一键安装脚本(主动模式监控)
#!/bin/bash basepath=$(cd `dirname $0`; pwd)SHELL_DIR="${basepath}/shell"PACKAGE_DIR=" ...
- ubuntu 双网卡建网桥脚本实现
#!/bin/bash interface1=`ls /sys/class/net|grep en|awk 'NR==1{print}'` interface2=`ls /sys/class/net| ...
- 关于DOM与BOM的总结
1.什么是BOM,什么是DOM(基本概念) BOM: Browers Object MOdel 浏览器对象模型 DOM: Document Object MOdel ...
- PHP封装的一个单例模式Mysql操作类
掌握满足单例模式的必要条件----三私一公. ①私有的构造方法-为了防止在类外使用new关键字实例化对象. ②私有的成员属性-为了防止在类外引入这个存放对象的属性. ③私有的克隆方法-为了防止在类外通 ...
- Angular CurrencyPipe货币管道关于人民币符号¥的问题
做项目(Angular项目)时经常需要处理金额的显示,需要在金额前面加上¥,但又不想用简单在前面加"¥"这么不优雅的方式,于是想到了CurrencyPipe.毕竟,Currency ...
- AGC010 - D: Decrementing
原题链接 题意简述 给出一个个数的序列,足够聪明的AB两人轮流进行以下操作: 令一个大于1的数减1,然后所有数除以. 如果一个人不能操作了,那么他就输了. 输入保证所有数都是正整数并且. 分析 这是一 ...
- mongodb 3.4 分片 一主 一副 一仲 鉴权集群部署.
Docker方式部署 为了避免过分冗余,并且在主节点挂了,还能顺利自动提升,所以加入仲裁节点 mongodb版本: 环境:一台虚拟机 三个configsvr 副本: 端口为 27020,27021,2 ...