排序算法,重要性不言而喻。现摘录一篇,转载至此,以供学习鉴赏。


插入排序

核心思想

插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一个新的、个数加一的有序数据,算法适用于少量数据的排序,时间复杂度为 O(n^2)。是稳定的排序方法。插入算法把要排序的数组分成两部分:第一部分包含了这个数组的所有元素,但将最后一个元素除外(让数组多一个空间才有插 入的位置),而第二部分就只包含这一个元素(即待插入元素)。在第一部分排序完成后,再将这个最后元素插入到已排好序的第一部分中。

代码实现

  1. def insert_sort(lists):
  2. # 插入排序
  3. count = len(lists)
  4. for i in range(1, count):
  5. key = lists[i]
  6. j = i - 1
  7. while j >= 0:
  8. if lists[j] > key:
  9. lists[j + 1] = lists[j]
  10. lists[j] = key
  11. j -= 1
  12. return lists

希尔排序

核心思想

希尔排序(Shell Sort)是插入排序的一种。也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。该方法因DL.Shell于 1959年提出而得名。 希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分 成一组,算法便终止。

代码实现

  1. def shell_sort(lists):
  2. # 希尔排序
  3. count = len(lists)
  4. step = 2
  5. group = count / step
  6. while group > 0:
  7. for i in range(0, group):
  8. j = i + group
  9. while j < count:
  10. k = j - group
  11. key = lists[j]
  12. while k >= 0:
  13. if lists[k] > key:
  14. lists[k + group] = lists[k]
  15. lists[k] = key
  16. k -= group
  17. j += group
  18. group /= step
  19. return lists

冒泡排序

核心思想

它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。

代码实现

  1. def bubble_sort(lists):
  2. # 冒泡排序
  3. count = len(lists)
  4. for i in range(0, count):
  5. for j in range(i + 1, count):
  6. if lists[i] > lists[j]:
  7. lists[i], lists[j] = lists[j], lists[i]
  8. return lists

快速排序

核心思想

通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

代码实现

  1. def quick_sort(lists, left, right):
  2. # 快速排序
  3. if left >= right:
  4. return lists
  5. key = lists[left]
  6. low = left
  7. high = right
  8. while left < right:
  9. while left < right and lists[right] >= key:
  10. right -= 1
  11. lists[left] = lists[right]
  12. while left < right and lists[left] <= key:
  13. left += 1
  14. lists[right] = lists[left]
  15. lists[right] = key
  16. quick_sort(lists, low, left - 1)
  17. quick_sort(lists, left + 1, high)
  18. return lists

直接选择排序

核心思想

基本思想:第1趟,在待排序记录r1 ~ r[n]中选出最小的记录,将它与r1交换;第2趟,在待排序记录r2 ~ r[n]中选出最小的记录,将它与r2交换;以此类推,第i趟在待排序记录r[i] ~ r[n]中选出最小的记录,将它与r[i]交换,使有序序列不断增长直到全部排序完毕。

代码实现

  1. def select_sort(lists):
  2. # 选择排序
  3. count = len(lists)
  4. for i in range(0, count):
  5. min = i
  6. for j in range(i + 1, count):
  7. if lists[min] > lists[j]:
  8. min = j
  9. lists[min], lists[i] = lists[i], lists[min]
  10. return lists

堆排序

核心思想

堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。可以利用数组的特点快速定位指定索引的元 素。堆分为大根堆和小根堆,是完全二叉树。大根堆的要求是每个节点的值都不大于其父节点的值,即A[PARENT[i]] >= A[i]。在数组的非降序排序中,需要使用的就是大根堆,因为根据大根堆的要求可知,最大的值一定在堆顶。

代码实现

  1. # 调整堆
  2. def adjust_heap(lists, i, size):
  3. lchild = 2 * i + 1
  4. rchild = 2 * i + 2
  5. max = i
  6. if i < size / 2:
  7. if lchild < size and lists[lchild] > lists[max]:
  8. max = lchild
  9. if rchild < size and lists[rchild] > lists[max]:
  10. max = rchild
  11. if max != i:
  12. lists[max], lists[i] = lists[i], lists[max]
  13. adjust_heap(lists, max, size)
  14. # 创建堆
  15. def build_heap(lists, size):
  16. for i in range(0, (size/2))[::-1]:
  17. adjust_heap(lists, i, size)
  18. # 堆排序
  19. def heap_sort(lists):
  20. size = len(lists)
  21. build_heap(lists, size)
  22. for i in range(0, size)[::-1]:
  23. lists[0], lists[i] = lists[i], lists[0]
  24. adjust_heap(lists, 0, i)

归并排序

核心思想

归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一 个有序表,称为二路归并。

归并过程为:比较a[i]和a[j]的大小,若a[i]≤a[j],则将第一个有序表中的元素a[i]复制到r[k]中,并令i和k分别加上1;否 则将第二个有序表中的元素a[j]复制到r[k]中,并令j和k分别加上1,如此循环下去,直到其中一个有序表取完,然后再将另一个有序表中剩余的元素复 制到r中从下标k到下标t的单元。归并排序的算法我们通常用递归实现,先把待排序区间[s,t]以中点二分,接着把左边子区间排序,再把右边子区间排序, 最后把左区间和右区间用一次归并操作合并成有序的区间[s,t]。

代码实现

  1. def merge(left, right):
  2. i, j = 0, 0
  3. result = []
  4. while i < len(left) and j < len(right):
  5. if left[i] <= right[j]:
  6. result.append(left[i])
  7. i += 1
  8. else:
  9. result.append(right[j])
  10. j += 1
  11. result += left[i:]
  12. result += right[j:]
  13. return result
  14. def merge_sort(lists):
  15. # 归并排序
  16. if len(lists) <= 1:
  17. return lists
  18. num = len(lists) / 2
  19. left = merge_sort(lists[:num])
  20. right = merge_sort(lists[num:])
  21. return merge(left, right)

基数排序

核心思想

基数排序(radix sort)属于“分配式排序”(distribution sort),又称“桶子法”(bucket sort)或bin sort,顾名思义,它是透过键值的部份资讯,将要排序的元素分配至某些“桶”中,藉以达到排序的作用,基数排序法是属于稳定性的排序,其时间复杂度为O (nlog(r)m),其中r为所采取的基数,而m为堆数,在某些时候,基数排序法的效率高于其它的稳定性排序法。

代码实现

  1. import math
  2. def radix_sort(lists, radix=10):
  3. k = int(math.ceil(math.log(max(lists), radix)))
  4. bucket = [[] for i in range(radix)]
  5. for i in range(1, k+1):
  6. for j in lists:
  7. bucket[j/(radix**(i-1)) % (radix**i)].append(j)
  8. del lists[:]
  9. for z in bucket:
  10. lists += z
  11. del z[:]
  12. return lists

以上便是转载别人的常用的排序算法,当然了关于排序算法的实现还有很多,这里我在写一个关于“桶排序”的小例子吧。

桶排序

核心思想

为了节省空间和时间,我们需要指定要排序的数据中最小以及最大的数字的值,来方便桶排序算法的运算。

代码实现

  1. # coding:utf-8
  2. import sys
  3. reload(sys)
  4. sys.setdefaultencoding('utf8')
  5. # __author__ = '郭 璞'
  6. # __date__ = '2016/9/6'
  7. # __Desc__ = 桶排序算法,代码实现
  8. def sort(arr):
  9. result = []
  10. for index in range(0,len(arr)):
  11. result.append(0)
  12. for index in range(len(arr)):
  13. counter = result[arr[index]]+1
  14. result[arr[index]]=counter
  15. return result
  16. if __name__ == '__main__':
  17. arr = [1,3,5,7,9,2,9,4,6,8,0,1,1,3,2,2,2,2]
  18. arr = sort(arr)
  19. for item in range(len(arr)):
  20. if arr[item]!=0:
  21. step = arr[item]
  22. while step>0:
  23. print item,
  24. step-=1

测试结果

  1. D:\Software\Python2\python.exe E:/Code/Python/DataStructor/temp/BarrelSort.py
  2. 0 1 1 1 2 2 2 2 2 3 3 4 5 6 7 8 9 9
  3. Process finished with exit code 0

总结

以上共介绍了大牛完成的经典的八大排序算法,以及自己实现的一个简单的关于桶排序的小案例。

Python实现八大排序算法(转载)+ 桶排序(原创)的更多相关文章

  1. 算法相关——Java排序算法之桶排序(一)

    (代码中对应一个数组的下标),将每个元素放入对应桶中,再将所有元素按顺序输出(代码中则按顺序将数组i下标输出arrary[i]次),即为{0,1,3,5,5,6,9}. 1.2  代码实现 /* *@ ...

  2. 数据结构与算法之PHP排序算法(桶排序)

    一.基本思想 桶排序是将待排序的数据分割成许多buckets,然后每个bucket各自排序,或用不同的排序算法,或者递归的使用bucket sort算法.也是典型的分而治之(divide-and-co ...

  3. Python排序算法之选择排序定义与用法示例

    Python排序算法之选择排序定义与用法示例 这篇文章主要介绍了Python排序算法之选择排序定义与用法,简单描述了选择排序的功能.原理,并结合实例形式分析了Python定义与使用选择排序的相关操作技 ...

  4. 八大排序算法~简单选择排序【记录下标k变量的作用】

    八大排序算法~简单选择排序[记录下标k变量的作用] 1,思想:打擂台法,数组中的前n-1个元素依次上擂台"装嫩",后边的元素一个挨着一个不服,一个一个上去换掉它 2,优化:通过记录 ...

  5. 排序算法总结------选择排序 ---javascript描述

    每当面试时避不可少谈论的话题是排序算法,上次面试时被问到写排序算法,然后脑袋一懵不会写,狠狠的被面试官鄙视了一番,问我是不是第一次参加面试,怎么可以连排序算法都不会呢?不过当时确实是第一次去面试,以此 ...

  6. Java常见排序算法之Shell排序

    在学习算法的过程中,我们难免会接触很多和排序相关的算法.总而言之,对于任何编程人员来说,基本的排序算法是必须要掌握的. 从今天开始,我们将要进行基本的排序算法的讲解.Are you ready?Let ...

  7. 数据结构与算法之PHP排序算法(希尔排序)

    一.基本思想 希尔排序算法是希尔排序,也称递减增量排序算法,是插入排序的一种更高效的改进版本. 该方法的基本思想是:先将整个待排元素序列分割成若干个子序列(由相隔某个“增量”的元素组成的)分别进行直接 ...

  8. 【DS】排序算法之希尔排序(Shell Sort)

    一.算法思想 希尔排序,也称递减增量排序算法,是插入排序的一种更高效的改进版本.希尔排序是非稳定排序算法.希尔排序是基于插入排序的以下两点性质而提出改进方法的:1)插入排序在对几乎已经排好序的数据操作 ...

  9. JavaScript ,Python,java,Go系列算法之选择排序

    常见的内部排序算法有:插入排序.希尔排序.选择排序.冒泡排序.归并排序.快速排序.堆排序.基数排序等. 用一张图概括:   选择排序 选择排序是一种简单直观的排序算法,无论什么数据进去都是O(n2) ...

  10. 排序算法之选择排序的python实现

    选择排序算法的工作原理如下: 1. 首先在序列中找到最小或最大元素,存放到排序序列的前或后. 2. 然后,再从剩余元素中继续寻找最小或最大元素. 3. 然后放到已排序序列的末尾. 4. 以此类推,直到 ...

随机推荐

  1. 一日一练-CSS CSS中percentage百分值的使用

    子曰:学好百分值,考试考百分 首先是确定CSS 中的percentage 都可以应用在CSS 中的哪些属性,以及这些属性的值如何进行计算的,参考CSS 参考手册进行统计. 定位(Positioning ...

  2. SocketServer源码学习(一)

    SocketServer其实是对socket更高级的封装正如官网上说的:The socketserver module simplifies the task of writing network s ...

  3. [LeetCode] Remove 9 移除9

    Start from integer 1, remove any integer that contains 9 such as 9, 19, 29... So now, you will have ...

  4. 一个web程序员的年终总结

    2017年年终总结(就是一个程序员的瞎叨叨): 从来到中科院到现在,很开心可以在这留下来.毕竟对于我来说,这里符合我对自己毕业后前两年的规划.我是一个很慢的人,特别是对于我想做好的事情,我会非常认真仔 ...

  5. Shiro整合Spring

    首先需要添加shiro的spring整合包. 要想在WEB应用中整合Spring和Shiro的话,首先需要添加一个由spring代理的过滤器如下: <!-- The filter-name ma ...

  6. [ZJOI 2010]base 基站选址

    Description 题库链接 给出 \(n\) 个村庄的横坐标 \(D_i\) .要求在这 \(n\) 个村庄内最多选择 \(m\) 个作为通讯基站,在村庄 \(i\) 建造通讯基站的代价为 \( ...

  7. [HAOI 2011]Problem b

    Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数 ...

  8. [BZOJ 2169]连边

    Description 有N个点(编号1到N)组成的无向图,已经为你连了M条边.请你再连K条边,使得所有的点的度数都是偶数.求有多少种连的方法.要求你连的K条边中不能有重边,但和已经连好的边可以重.不 ...

  9. [TJOI 2010]中位数

    Description 给定一个由N个元素组成的整数序列,现在有两种操作: 1 add a 在该序列的最后添加一个整数a,组成长度为N + 1的整数序列 2 mid 输出当前序列的中位数 中位数是指将 ...

  10. hdu 5340 (manacher)

    Sample Input 2 abc abaadada   Sample Output Yes No 判断是否能成为3个非空回文子串 manacher算法求出个点回文长度,在找出第一个和最后一个保存下 ...