// watershed_test20140801.cpp : 定义控制台应用程序的入口点。
// #include "stdafx.h" //
// ch9_watershed image
// This is an exact copy of the watershed.cpp demo in the OpenCV ../samples/c directory
//
// Think about using a morphologically eroded forground and background segmented image as the template
// for the watershed algorithm to segment objects by color and edges for collecting
//
/* *************** License:**************************
Oct. 3, 2008
Right to use this code in any way you want without warrenty, support or any guarentee of it working. BOOK: It would be nice if you cited it:
Learning OpenCV: Computer Vision with the OpenCV Library
by Gary Bradski and Adrian Kaehler
Published by O'Reilly Media, October 3, 2008 AVAILABLE AT:
http://www.amazon.com/Learning-OpenCV-Computer-Vision-Library/dp/0596516134
Or: http://oreilly.com/catalog/9780596516130/
ISBN-10: 0596516134 or: ISBN-13: 978-0596516130 OTHER OPENCV SITES:
* The source code is on sourceforge at:
http://sourceforge.net/projects/opencvlibrary/
* The OpenCV wiki page (As of Oct 1, 2008 this is down for changing over servers, but should come back):
http://opencvlibrary.sourceforge.net/
* An active user group is at:
http://tech.groups.yahoo.com/group/OpenCV/
* The minutes of weekly OpenCV development meetings are at:
http://pr.willowgarage.com/wiki/OpenCV
************************************************** */ #include "cv.h"
#include "highgui.h"
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
using namespace std; IplImage* marker_mask = 0;
IplImage* markers = 0;
IplImage* img0 = 0, *img = 0, *img_gray = 0, *wshed = 0;
CvPoint prev_pt = {-1,-1}; void on_mouse( int event, int x, int y, int flags, void* param )
{
if( !img )
return; if( event == CV_EVENT_LBUTTONUP || !(flags & CV_EVENT_FLAG_LBUTTON) )
prev_pt = cvPoint(-1,-1);
else if( event == CV_EVENT_LBUTTONDOWN )
prev_pt = cvPoint(x,y);
else if( event == CV_EVENT_MOUSEMOVE && (flags & CV_EVENT_FLAG_LBUTTON) )
{
CvPoint pt = cvPoint(x,y);
if( prev_pt.x < 0 )
prev_pt = pt;
cvLine( marker_mask, prev_pt, pt, cvScalarAll(255), 5, 8, 0 );
cvLine( img, prev_pt, pt, cvScalarAll(255), 5, 8, 0 );
prev_pt = pt;
cvShowImage( "image", img );
}
} int main( int argc, char** argv )
{
cout<<"input image name: "<<endl;
string file;
cin>>file; char* filename = (char *)file.c_str(); CvRNG rng = cvRNG(-1); if( (img0 = cvLoadImage(filename,1)) == 0 )
return 0; printf( "Hot keys: \n"
"\tESC - quit the program\n"
"\tr - restore the original image\n"
"\tw or ENTER - run watershed algorithm\n"
"\t\t(before running it, roughly mark the areas on the image)\n"
"\t (before that, roughly outline several markers on the image)\n" ); cvNamedWindow( "image", 1 );
cvNamedWindow( "watershed transform", 1 ); img = cvCloneImage( img0 );
img_gray = cvCloneImage( img0 );
wshed = cvCloneImage( img0 );
marker_mask = cvCreateImage( cvGetSize(img), 8, 1 );
markers = cvCreateImage( cvGetSize(img), IPL_DEPTH_32S, 1 );
cvCvtColor( img, marker_mask, CV_BGR2GRAY );
cvCvtColor( marker_mask, img_gray, CV_GRAY2BGR ); cvZero( marker_mask );
cvZero( wshed );
cvShowImage( "image", img );
cvShowImage( "watershed transform", wshed );
cvSetMouseCallback( "image", on_mouse, 0 ); for(;;)
{
int c = cvWaitKey(0); if( (char)c == 27 )
break; if( (char)c == 'r' )
{
cvZero( marker_mask );
cvCopy( img0, img );
cvShowImage( "image", img );
} if( (char)c == 'w' || (char)c == '\n' )
{
CvMemStorage* storage = cvCreateMemStorage(0);
CvSeq* contours = 0;
CvMat* color_tab;
int i, j, comp_count = 0;
//cvSaveImage( "wshed_mask.png", marker_mask );
//marker_mask = cvLoadImage( "wshed_mask.png", 0 );
cvFindContours( marker_mask, storage, &contours, sizeof(CvContour),
CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE );
cvZero( markers );
for( ; contours != 0; contours = contours->h_next, comp_count++ )
{
cvDrawContours( markers, contours, cvScalarAll(comp_count+1),
cvScalarAll(comp_count+1), -1, -1, 8, cvPoint(0,0) );
} color_tab = cvCreateMat( 1, comp_count, CV_8UC3 );
for( i = 0; i < comp_count; i++ )
{
uchar* ptr = color_tab->data.ptr + i*3;
ptr[0] = (uchar)(cvRandInt(&rng)%180 + 50);
ptr[1] = (uchar)(cvRandInt(&rng)%180 + 50);
ptr[2] = (uchar)(cvRandInt(&rng)%180 + 50);
} {
double t = (double)cvGetTickCount();
cvWatershed( img0, markers );
t = (double)cvGetTickCount() - t;
printf( "exec time = %gms\n", t/(cvGetTickFrequency()*1000.) );
} // paint the watershed image
for( i = 0; i < markers->height; i++ )
for( j = 0; j < markers->width; j++ )
{
int idx = CV_IMAGE_ELEM( markers, int, i, j );
uchar* dst = &CV_IMAGE_ELEM( wshed, uchar, i, j*3 );
if( idx == -1 )
dst[0] = dst[1] = dst[2] = (uchar)255;
else if( idx <= 0 || idx > comp_count )
dst[0] = dst[1] = dst[2] = (uchar)0; // should not get here
else
{
uchar* ptr = color_tab->data.ptr + (idx-1)*3;
dst[0] = ptr[0]; dst[1] = ptr[1]; dst[2] = ptr[2];
}
} cvAddWeighted( wshed, 0.5, img_gray, 0.5, 0, wshed );
cvShowImage( "watershed transform", wshed );
cvReleaseMemStorage( &storage );
cvReleaseMat( &color_tab );
}
} return 1;
}

OpenCV 1 图像分割--分水岭算法代码的更多相关文章

  1. OpenCV学习(9) 分水岭算法(3)

    本教程我学习一下opencv中分水岭算法的具体实现方式. 原始图像和Mark图像,它们的大小都是32*32,分水岭算法的结果是得到两个连通域的轮廓图. 原始图像:(原始图像必须是3通道图像) Mark ...

  2. OpenCV学习(8) 分水岭算法(2)

        现在我们看看OpenCV中如何使用分水岭算法.     首先我们打开一副图像:    // 打开另一幅图像   cv::Mat    image= cv::imread("../to ...

  3. OpenCV学习(7) 分水岭算法(1)

            分水岭算法主要用于图像分段,通常是把一副彩色图像灰度化,然后再求梯度图,最后在梯度图的基础上进行分水岭算法,求得分段图像的边缘线.         下面左边的灰度图,可以描述为右边的地 ...

  4. OpenCV 学习笔记 04 深度估计与分割——GrabCut算法与分水岭算法

    1 使用普通摄像头进行深度估计 1.1 深度估计原理 这里会用到几何学中的极几何(Epipolar Geometry),它属于立体视觉(stereo vision)几何学,立体视觉是计算机视觉的一个分 ...

  5. 分水岭算法(理论+opencv实现)

    分水岭算法理论 从意思上就知道通过用水来进行分类,学术上说什么基于拓扑结构的形态学...其实就是根据把图像比作一副地貌,然后通过最低点和最高点去分类! 原始的分水岭: 就是上面说的方式,接下来用一幅图 ...

  6. python实现分水岭算法

    目录: 问题:分水岭算法对图像分割很有作用,怎么把对象分割开来的?分水岭算法是比较完美的分割,跟前面的讲的轮廓不一样! (一)原理 (二)实现 (一)原理 opencv中的分水岭算法是基于距离变换的, ...

  7. Opencv分水岭算法——watershed自动图像分割用法

    分水岭算法是一种图像区域分割法,在分割的过程中,它会把跟临近像素间的相似性作为重要的参考依据,从而将在空间位置上相近并且灰度值相近的像素点互相连接起来构成一个封闭的轮廓,封闭性是分水岭算法的一个重要特 ...

  8. opencv分水岭算法对图像进行切割

    先看效果 说明 使用分水岭算法对图像进行切割,设置一个标记图像能达到比較好的效果,还能防止过度切割. 1.这里首先对阈值化的二值图像进行腐蚀,去掉小的白色区域,得到图像的前景区域.并对前景区域用255 ...

  9. opencv学习之路(30)、分水岭算法及图像修补

    一.简介 二.分水岭算法 #include "opencv2/opencv.hpp" using namespace cv; void main() { Mat srcImg = ...

随机推荐

  1. 12 PopupWindow

    PopupWindow创建方式 PopupWindow pop = new PopupWindow() PopupWindow pop = new PopupWindow(上下文, 填充宽, 填充高) ...

  2. Socket层实现系列 — send()类发送函数的实现

    主要内容:socket发送函数的系统调用.Socket层实现. 内核版本:3.15.2 我的博客:http://blog.csdn.net/zhangskd 发送流程图 以下是send().sendt ...

  3. 1. React介绍 React开发环境搭建 React第一个程序

    什么是 React         React 是 Facebook 发布的 JavaScript 库,以其高性能和独特的设计理念受到了广泛关注. React的开发背景         Faceboo ...

  4. Unity插件 - MeshEditor(六) 变形动画状态机

    变形动画状态机--MeshAnimator,是针对MeshAnimation的状态管理器,有大量类似Unity animator的功能,但MeshAnimator操作会更加简便,更加直观,居家旅(zh ...

  5. 09 ExpanableListView 的代码例子

    <span style="font-size:18px;">package com.qf.day09_expandablelistview03; import andr ...

  6. Linux内核基础

            Linux系统运行的应用程序通过系统调用来与内核通信.应用程序通常调用库函数(比如C库函数)再有库函数通过系统调用界面,让内核带其完成各种不同的任务. 下面这张图显示的就是应用程序,内 ...

  7. 03_NoSQL数据库之Redis数据库:list类型

     lists类型及操作 List是一个链表结构,主要功能室push,pop.获取一个范围的所有值等等,操作中key理解为链表的名字.Redis的list类型其实就是一个每个元素都是string类型 ...

  8. 【一天一道LeetCode】#169. Majority Element

    一天一道LeetCode 本系列文章已全部上传至我的github,地址:ZeeCoder's Github 欢迎大家关注我的新浪微博,我的新浪微博 欢迎转载,转载请注明出处 (一)题目 Given a ...

  9. jdbc连接sql数据库

    JDBC(Java Data Base Connectivity,java数据库连接)是一种用于执行SQL语句的Java API,可以为多种关系数据库提供统一访问,它由一组用Java语言编写的类和接口 ...

  10. Android万能适配器Adapter-android学习之旅(74)

    万能适配器的代码的github地址是https://github.com/fengsehng/CommonAdapter 万能适配器的代码的github地址是https://github.com/fe ...