OpenCV 1 图像分割--分水岭算法代码
// watershed_test20140801.cpp : 定义控制台应用程序的入口点。
// #include "stdafx.h" //
// ch9_watershed image
// This is an exact copy of the watershed.cpp demo in the OpenCV ../samples/c directory
//
// Think about using a morphologically eroded forground and background segmented image as the template
// for the watershed algorithm to segment objects by color and edges for collecting
//
/* *************** License:**************************
Oct. 3, 2008
Right to use this code in any way you want without warrenty, support or any guarentee of it working. BOOK: It would be nice if you cited it:
Learning OpenCV: Computer Vision with the OpenCV Library
by Gary Bradski and Adrian Kaehler
Published by O'Reilly Media, October 3, 2008 AVAILABLE AT:
http://www.amazon.com/Learning-OpenCV-Computer-Vision-Library/dp/0596516134
Or: http://oreilly.com/catalog/9780596516130/
ISBN-10: 0596516134 or: ISBN-13: 978-0596516130 OTHER OPENCV SITES:
* The source code is on sourceforge at:
http://sourceforge.net/projects/opencvlibrary/
* The OpenCV wiki page (As of Oct 1, 2008 this is down for changing over servers, but should come back):
http://opencvlibrary.sourceforge.net/
* An active user group is at:
http://tech.groups.yahoo.com/group/OpenCV/
* The minutes of weekly OpenCV development meetings are at:
http://pr.willowgarage.com/wiki/OpenCV
************************************************** */ #include "cv.h"
#include "highgui.h"
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
using namespace std; IplImage* marker_mask = 0;
IplImage* markers = 0;
IplImage* img0 = 0, *img = 0, *img_gray = 0, *wshed = 0;
CvPoint prev_pt = {-1,-1}; void on_mouse( int event, int x, int y, int flags, void* param )
{
if( !img )
return; if( event == CV_EVENT_LBUTTONUP || !(flags & CV_EVENT_FLAG_LBUTTON) )
prev_pt = cvPoint(-1,-1);
else if( event == CV_EVENT_LBUTTONDOWN )
prev_pt = cvPoint(x,y);
else if( event == CV_EVENT_MOUSEMOVE && (flags & CV_EVENT_FLAG_LBUTTON) )
{
CvPoint pt = cvPoint(x,y);
if( prev_pt.x < 0 )
prev_pt = pt;
cvLine( marker_mask, prev_pt, pt, cvScalarAll(255), 5, 8, 0 );
cvLine( img, prev_pt, pt, cvScalarAll(255), 5, 8, 0 );
prev_pt = pt;
cvShowImage( "image", img );
}
} int main( int argc, char** argv )
{
cout<<"input image name: "<<endl;
string file;
cin>>file; char* filename = (char *)file.c_str(); CvRNG rng = cvRNG(-1); if( (img0 = cvLoadImage(filename,1)) == 0 )
return 0; printf( "Hot keys: \n"
"\tESC - quit the program\n"
"\tr - restore the original image\n"
"\tw or ENTER - run watershed algorithm\n"
"\t\t(before running it, roughly mark the areas on the image)\n"
"\t (before that, roughly outline several markers on the image)\n" ); cvNamedWindow( "image", 1 );
cvNamedWindow( "watershed transform", 1 ); img = cvCloneImage( img0 );
img_gray = cvCloneImage( img0 );
wshed = cvCloneImage( img0 );
marker_mask = cvCreateImage( cvGetSize(img), 8, 1 );
markers = cvCreateImage( cvGetSize(img), IPL_DEPTH_32S, 1 );
cvCvtColor( img, marker_mask, CV_BGR2GRAY );
cvCvtColor( marker_mask, img_gray, CV_GRAY2BGR ); cvZero( marker_mask );
cvZero( wshed );
cvShowImage( "image", img );
cvShowImage( "watershed transform", wshed );
cvSetMouseCallback( "image", on_mouse, 0 ); for(;;)
{
int c = cvWaitKey(0); if( (char)c == 27 )
break; if( (char)c == 'r' )
{
cvZero( marker_mask );
cvCopy( img0, img );
cvShowImage( "image", img );
} if( (char)c == 'w' || (char)c == '\n' )
{
CvMemStorage* storage = cvCreateMemStorage(0);
CvSeq* contours = 0;
CvMat* color_tab;
int i, j, comp_count = 0;
//cvSaveImage( "wshed_mask.png", marker_mask );
//marker_mask = cvLoadImage( "wshed_mask.png", 0 );
cvFindContours( marker_mask, storage, &contours, sizeof(CvContour),
CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE );
cvZero( markers );
for( ; contours != 0; contours = contours->h_next, comp_count++ )
{
cvDrawContours( markers, contours, cvScalarAll(comp_count+1),
cvScalarAll(comp_count+1), -1, -1, 8, cvPoint(0,0) );
} color_tab = cvCreateMat( 1, comp_count, CV_8UC3 );
for( i = 0; i < comp_count; i++ )
{
uchar* ptr = color_tab->data.ptr + i*3;
ptr[0] = (uchar)(cvRandInt(&rng)%180 + 50);
ptr[1] = (uchar)(cvRandInt(&rng)%180 + 50);
ptr[2] = (uchar)(cvRandInt(&rng)%180 + 50);
} {
double t = (double)cvGetTickCount();
cvWatershed( img0, markers );
t = (double)cvGetTickCount() - t;
printf( "exec time = %gms\n", t/(cvGetTickFrequency()*1000.) );
} // paint the watershed image
for( i = 0; i < markers->height; i++ )
for( j = 0; j < markers->width; j++ )
{
int idx = CV_IMAGE_ELEM( markers, int, i, j );
uchar* dst = &CV_IMAGE_ELEM( wshed, uchar, i, j*3 );
if( idx == -1 )
dst[0] = dst[1] = dst[2] = (uchar)255;
else if( idx <= 0 || idx > comp_count )
dst[0] = dst[1] = dst[2] = (uchar)0; // should not get here
else
{
uchar* ptr = color_tab->data.ptr + (idx-1)*3;
dst[0] = ptr[0]; dst[1] = ptr[1]; dst[2] = ptr[2];
}
} cvAddWeighted( wshed, 0.5, img_gray, 0.5, 0, wshed );
cvShowImage( "watershed transform", wshed );
cvReleaseMemStorage( &storage );
cvReleaseMat( &color_tab );
}
} return 1;
}
OpenCV 1 图像分割--分水岭算法代码的更多相关文章
- OpenCV学习(9) 分水岭算法(3)
本教程我学习一下opencv中分水岭算法的具体实现方式. 原始图像和Mark图像,它们的大小都是32*32,分水岭算法的结果是得到两个连通域的轮廓图. 原始图像:(原始图像必须是3通道图像) Mark ...
- OpenCV学习(8) 分水岭算法(2)
现在我们看看OpenCV中如何使用分水岭算法. 首先我们打开一副图像: // 打开另一幅图像 cv::Mat image= cv::imread("../to ...
- OpenCV学习(7) 分水岭算法(1)
分水岭算法主要用于图像分段,通常是把一副彩色图像灰度化,然后再求梯度图,最后在梯度图的基础上进行分水岭算法,求得分段图像的边缘线. 下面左边的灰度图,可以描述为右边的地 ...
- OpenCV 学习笔记 04 深度估计与分割——GrabCut算法与分水岭算法
1 使用普通摄像头进行深度估计 1.1 深度估计原理 这里会用到几何学中的极几何(Epipolar Geometry),它属于立体视觉(stereo vision)几何学,立体视觉是计算机视觉的一个分 ...
- 分水岭算法(理论+opencv实现)
分水岭算法理论 从意思上就知道通过用水来进行分类,学术上说什么基于拓扑结构的形态学...其实就是根据把图像比作一副地貌,然后通过最低点和最高点去分类! 原始的分水岭: 就是上面说的方式,接下来用一幅图 ...
- python实现分水岭算法
目录: 问题:分水岭算法对图像分割很有作用,怎么把对象分割开来的?分水岭算法是比较完美的分割,跟前面的讲的轮廓不一样! (一)原理 (二)实现 (一)原理 opencv中的分水岭算法是基于距离变换的, ...
- Opencv分水岭算法——watershed自动图像分割用法
分水岭算法是一种图像区域分割法,在分割的过程中,它会把跟临近像素间的相似性作为重要的参考依据,从而将在空间位置上相近并且灰度值相近的像素点互相连接起来构成一个封闭的轮廓,封闭性是分水岭算法的一个重要特 ...
- opencv分水岭算法对图像进行切割
先看效果 说明 使用分水岭算法对图像进行切割,设置一个标记图像能达到比較好的效果,还能防止过度切割. 1.这里首先对阈值化的二值图像进行腐蚀,去掉小的白色区域,得到图像的前景区域.并对前景区域用255 ...
- opencv学习之路(30)、分水岭算法及图像修补
一.简介 二.分水岭算法 #include "opencv2/opencv.hpp" using namespace cv; void main() { Mat srcImg = ...
随机推荐
- Django使用forms来实现评论功能
貌似Django从版本1.6开始就放弃了对自带的comments的使用,具体原因未查,但是现在使用Django的内部的模块也可以实现评论功能,那就是借助于forms模块,下面是我的一个小例子. 环境准 ...
- 高通msm8994性能及温度监测脚本
[plain] view plain copystartTime=$(date +%Y-%m-%d-%H-%M-%S) pathName="/data/cpu_logs" fi ...
- 对 jiffies 溢出、回绕及 time_after 宏的理解
原文如下: 关于jiffies变量: 全局变量jiffies用来记录自启动以来产生的节拍的总数.系统启动时会将该变量初始化为0,此后,每当时钟中断产生时就会增加该变量的值.jiffies和另外 ...
- 安装解压版本的MySQL,安装过程中的常见命令,检查windows系统错误日志的方式来检查MySQL启动错误,关于Fatal error: Can't open and lock privilege
以端口 port = 3306 # 设置mysql的安装目录 basedir=D://Installed//mysql-5.6.26-winx64//mysql-5.6.26-winx64 # ...
- (一〇六)iPad开发之UIPopoverController的使用
很多App里都有一种点击显示的悬浮气泡菜单,例如下图: 在iPad上可以使用UIPopoverController实现这个功能,popoverController继承自NSObject而不是UIVie ...
- Linux之mailx的使用
mailx是UNIX系统上用来处理邮件的工具,使用它可以发送,读取邮件.下面看看如何使用它来发送邮件. 发送格式 mailx -s subject user@xxx.com < message_ ...
- iOS开发之四:常用控件--UIButton的使用
在介绍UIButton的用法前,要先了解一下它的父类UIControl,UIControl是所有具有事件处理功能控件的父类. 而该类控件一般响应事件又有三种形式:基于触摸.基础值.基础编辑.控件的层次 ...
- JAVA内部类_2
(d)匿名内部类 如果只创建这个类的第一个对象,就无需命名. 由于构造器的名字必须与类名相同,而匿名类没有类名,所以匿名类没有构造器. 取而代之的是将构造器参数传递给超类构造器. 在内部类实现接口的时 ...
- iOS屏幕适配-iOS笔记
学习目标 1.[了解]屏幕适配的发展史 2.[了解]autoResizing基本用法 3.[掌握]autoLayout 的基本用法 4.[掌握]autoLayout代码实现 5.[理解]sizeCla ...
- (三十八)从私人通讯录引出的细节II -数据逆传 -tableView点击 -自定义分割线
项目中的警告是不会影响app发布的,例如引入第三方类库很容易引入警告. 细节1:跳转的数据传递. prepareForSegue: sender: 方法是在执行segue后,跳转之前调用这个方法,一般 ...