OpenCV 1 图像分割--分水岭算法代码
// watershed_test20140801.cpp : 定义控制台应用程序的入口点。
// #include "stdafx.h" //
// ch9_watershed image
// This is an exact copy of the watershed.cpp demo in the OpenCV ../samples/c directory
//
// Think about using a morphologically eroded forground and background segmented image as the template
// for the watershed algorithm to segment objects by color and edges for collecting
//
/* *************** License:**************************
Oct. 3, 2008
Right to use this code in any way you want without warrenty, support or any guarentee of it working. BOOK: It would be nice if you cited it:
Learning OpenCV: Computer Vision with the OpenCV Library
by Gary Bradski and Adrian Kaehler
Published by O'Reilly Media, October 3, 2008 AVAILABLE AT:
http://www.amazon.com/Learning-OpenCV-Computer-Vision-Library/dp/0596516134
Or: http://oreilly.com/catalog/9780596516130/
ISBN-10: 0596516134 or: ISBN-13: 978-0596516130 OTHER OPENCV SITES:
* The source code is on sourceforge at:
http://sourceforge.net/projects/opencvlibrary/
* The OpenCV wiki page (As of Oct 1, 2008 this is down for changing over servers, but should come back):
http://opencvlibrary.sourceforge.net/
* An active user group is at:
http://tech.groups.yahoo.com/group/OpenCV/
* The minutes of weekly OpenCV development meetings are at:
http://pr.willowgarage.com/wiki/OpenCV
************************************************** */ #include "cv.h"
#include "highgui.h"
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
using namespace std; IplImage* marker_mask = 0;
IplImage* markers = 0;
IplImage* img0 = 0, *img = 0, *img_gray = 0, *wshed = 0;
CvPoint prev_pt = {-1,-1}; void on_mouse( int event, int x, int y, int flags, void* param )
{
if( !img )
return; if( event == CV_EVENT_LBUTTONUP || !(flags & CV_EVENT_FLAG_LBUTTON) )
prev_pt = cvPoint(-1,-1);
else if( event == CV_EVENT_LBUTTONDOWN )
prev_pt = cvPoint(x,y);
else if( event == CV_EVENT_MOUSEMOVE && (flags & CV_EVENT_FLAG_LBUTTON) )
{
CvPoint pt = cvPoint(x,y);
if( prev_pt.x < 0 )
prev_pt = pt;
cvLine( marker_mask, prev_pt, pt, cvScalarAll(255), 5, 8, 0 );
cvLine( img, prev_pt, pt, cvScalarAll(255), 5, 8, 0 );
prev_pt = pt;
cvShowImage( "image", img );
}
} int main( int argc, char** argv )
{
cout<<"input image name: "<<endl;
string file;
cin>>file; char* filename = (char *)file.c_str(); CvRNG rng = cvRNG(-1); if( (img0 = cvLoadImage(filename,1)) == 0 )
return 0; printf( "Hot keys: \n"
"\tESC - quit the program\n"
"\tr - restore the original image\n"
"\tw or ENTER - run watershed algorithm\n"
"\t\t(before running it, roughly mark the areas on the image)\n"
"\t (before that, roughly outline several markers on the image)\n" ); cvNamedWindow( "image", 1 );
cvNamedWindow( "watershed transform", 1 ); img = cvCloneImage( img0 );
img_gray = cvCloneImage( img0 );
wshed = cvCloneImage( img0 );
marker_mask = cvCreateImage( cvGetSize(img), 8, 1 );
markers = cvCreateImage( cvGetSize(img), IPL_DEPTH_32S, 1 );
cvCvtColor( img, marker_mask, CV_BGR2GRAY );
cvCvtColor( marker_mask, img_gray, CV_GRAY2BGR ); cvZero( marker_mask );
cvZero( wshed );
cvShowImage( "image", img );
cvShowImage( "watershed transform", wshed );
cvSetMouseCallback( "image", on_mouse, 0 ); for(;;)
{
int c = cvWaitKey(0); if( (char)c == 27 )
break; if( (char)c == 'r' )
{
cvZero( marker_mask );
cvCopy( img0, img );
cvShowImage( "image", img );
} if( (char)c == 'w' || (char)c == '\n' )
{
CvMemStorage* storage = cvCreateMemStorage(0);
CvSeq* contours = 0;
CvMat* color_tab;
int i, j, comp_count = 0;
//cvSaveImage( "wshed_mask.png", marker_mask );
//marker_mask = cvLoadImage( "wshed_mask.png", 0 );
cvFindContours( marker_mask, storage, &contours, sizeof(CvContour),
CV_RETR_CCOMP, CV_CHAIN_APPROX_SIMPLE );
cvZero( markers );
for( ; contours != 0; contours = contours->h_next, comp_count++ )
{
cvDrawContours( markers, contours, cvScalarAll(comp_count+1),
cvScalarAll(comp_count+1), -1, -1, 8, cvPoint(0,0) );
} color_tab = cvCreateMat( 1, comp_count, CV_8UC3 );
for( i = 0; i < comp_count; i++ )
{
uchar* ptr = color_tab->data.ptr + i*3;
ptr[0] = (uchar)(cvRandInt(&rng)%180 + 50);
ptr[1] = (uchar)(cvRandInt(&rng)%180 + 50);
ptr[2] = (uchar)(cvRandInt(&rng)%180 + 50);
} {
double t = (double)cvGetTickCount();
cvWatershed( img0, markers );
t = (double)cvGetTickCount() - t;
printf( "exec time = %gms\n", t/(cvGetTickFrequency()*1000.) );
} // paint the watershed image
for( i = 0; i < markers->height; i++ )
for( j = 0; j < markers->width; j++ )
{
int idx = CV_IMAGE_ELEM( markers, int, i, j );
uchar* dst = &CV_IMAGE_ELEM( wshed, uchar, i, j*3 );
if( idx == -1 )
dst[0] = dst[1] = dst[2] = (uchar)255;
else if( idx <= 0 || idx > comp_count )
dst[0] = dst[1] = dst[2] = (uchar)0; // should not get here
else
{
uchar* ptr = color_tab->data.ptr + (idx-1)*3;
dst[0] = ptr[0]; dst[1] = ptr[1]; dst[2] = ptr[2];
}
} cvAddWeighted( wshed, 0.5, img_gray, 0.5, 0, wshed );
cvShowImage( "watershed transform", wshed );
cvReleaseMemStorage( &storage );
cvReleaseMat( &color_tab );
}
} return 1;
}
OpenCV 1 图像分割--分水岭算法代码的更多相关文章
- OpenCV学习(9) 分水岭算法(3)
本教程我学习一下opencv中分水岭算法的具体实现方式. 原始图像和Mark图像,它们的大小都是32*32,分水岭算法的结果是得到两个连通域的轮廓图. 原始图像:(原始图像必须是3通道图像) Mark ...
- OpenCV学习(8) 分水岭算法(2)
现在我们看看OpenCV中如何使用分水岭算法. 首先我们打开一副图像: // 打开另一幅图像 cv::Mat image= cv::imread("../to ...
- OpenCV学习(7) 分水岭算法(1)
分水岭算法主要用于图像分段,通常是把一副彩色图像灰度化,然后再求梯度图,最后在梯度图的基础上进行分水岭算法,求得分段图像的边缘线. 下面左边的灰度图,可以描述为右边的地 ...
- OpenCV 学习笔记 04 深度估计与分割——GrabCut算法与分水岭算法
1 使用普通摄像头进行深度估计 1.1 深度估计原理 这里会用到几何学中的极几何(Epipolar Geometry),它属于立体视觉(stereo vision)几何学,立体视觉是计算机视觉的一个分 ...
- 分水岭算法(理论+opencv实现)
分水岭算法理论 从意思上就知道通过用水来进行分类,学术上说什么基于拓扑结构的形态学...其实就是根据把图像比作一副地貌,然后通过最低点和最高点去分类! 原始的分水岭: 就是上面说的方式,接下来用一幅图 ...
- python实现分水岭算法
目录: 问题:分水岭算法对图像分割很有作用,怎么把对象分割开来的?分水岭算法是比较完美的分割,跟前面的讲的轮廓不一样! (一)原理 (二)实现 (一)原理 opencv中的分水岭算法是基于距离变换的, ...
- Opencv分水岭算法——watershed自动图像分割用法
分水岭算法是一种图像区域分割法,在分割的过程中,它会把跟临近像素间的相似性作为重要的参考依据,从而将在空间位置上相近并且灰度值相近的像素点互相连接起来构成一个封闭的轮廓,封闭性是分水岭算法的一个重要特 ...
- opencv分水岭算法对图像进行切割
先看效果 说明 使用分水岭算法对图像进行切割,设置一个标记图像能达到比較好的效果,还能防止过度切割. 1.这里首先对阈值化的二值图像进行腐蚀,去掉小的白色区域,得到图像的前景区域.并对前景区域用255 ...
- opencv学习之路(30)、分水岭算法及图像修补
一.简介 二.分水岭算法 #include "opencv2/opencv.hpp" using namespace cv; void main() { Mat srcImg = ...
随机推荐
- Linux/Unix--设备类型
在Linux以及所有的Unix系统中,设备被分为以下三种类型: 块设备 字符设备 网络设备 块设备通常写为 blkdev ,它是可以寻址的 ...
- Java基础---Java---面试题---交通灯管理系统(面向对象、枚举)
交通灯管理系统的项目需求: 模拟实现十字路口的交通灯管理系统逻辑,具体需求如下: 1.异步随机生成按照各个路线行驶的车辆 例如: 由南向而来去往北向的车辆-----直行车辆 由西向而来去往南 ...
- ubuntu连接android设备(附最简单方法)
在ubuntu下连接android设备,虽然不用像windows那样安装驱动,然而却会遇见一个错误:输入adb shell,会提示insufficient permissions for device ...
- 【一天一道LeetCode】#292. Nim Game
一天一道LeetCode 从今天开始,调整规律,不按顺序做,从easy开始! 本系列文章已全部上传至我的github,地址:ZeeCoder's Github 欢迎大家关注我的新浪微博,我的新浪微博 ...
- Android性能优化之Bitmap的内存优化
1.BitmapFactory解析Bitmap的原理 BitmapFactory提供的解析Bitmap的静态工厂方法有以下五种: Bitmap decodeFile(...) Bitmap decod ...
- (NO.00004)iOS实现打砖块游戏(四):砖块类的实现
大熊猫猪·侯佩原创或翻译作品.欢迎转载,转载请注明出处. 如果觉得写的不好请告诉我,如果觉得不错请多多支持点赞.谢谢! hopy ;) 用Xcode打开之前SpriteBuilder创建的项目,我们现 ...
- Maya人物骨骼创建与蒙皮
参考: HumanIK骨架的使用与蒙皮的操作 注意事项: 1. 编辑好骨骼一侧后,可删除另一侧,并使用镜像操作.镜像操作可以指定替换生成骨骼的名字中的子字符串. 2. 如果在编辑骨骼的时候由删除添加过 ...
- Unity UGUI基础之Text
Text作为UGUI最基础的控件以及最常用的控件,它在项目中的应用绝对可以算是最多的,任何一个UI界面可以说都离不开它,它的基本属性如下: 一.rect transform组件: rect trans ...
- Spring - IOC简介
DI(Dependence Injection)依赖注入: userService依赖于容器注入的 这样拿的 这个过程由容器来控制,这个称为依赖注入. IOC(Inverse of control)控 ...
- DB 查询分析器 6.04 发布 ,本人为之撰写的相关技术文章达78篇
DB查询分析器 6.04 发布,本人为之撰写的相关技术文章达78篇 中国本土程序员马根峰(CSDN专访马根峰:海量数据处理与分析大师的中国本土程序员 http://www.csdn.net/artic ...