题目描述:

You are climbing a stair case. It takes n steps to reach to the top.

Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?

先验知识:

斐波那契数列

斐波那契数列(Fibonacci sequence),又称黄金分割数列、因数学家列昂纳多·斐波那契(Leonardoda Fibonacci[1] )以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:0、1、1、2、3、5、8、13、21、34、……在数学上,斐波纳契数列以如下被以递归的方法定义:F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从1963起出版了以《斐波纳契数列季刊》为名的一份数学杂志,用于专门刊载这方面的研究成果。

通项公式:

(如上,又称为“比内公式”,是用无理数表示有理数的一个范例。)

一个有趣的现象:

有趣的是,这样一个完全是自然数的数列,通项公式却是用无理数来表达的。而且当n趋向于无穷大时,前一项与后一项的比值越来越逼近黄金分割0.618(或者说后一项与前一项的比值小数部分越来越逼近0.618)。

1÷1=1,1÷2=0.5,2÷3=0.666…,3÷5=0.6,5÷8=0.625…………,55÷89=0.617977……………144÷233=0.618025…46368÷75025=0.6180339886……

数学真是奇妙,有趣的

动态规划:

动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。20世纪50年代初美国数学家R.E.Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优化原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,利用各阶段之间的关系,逐个求解,创立了解决这类过程优化问题的新方法——动态规划。1957年出版了他的名著《Dynamic Programming》,这是该领域的第一本著作。

注意是把多阶段转化为单阶段,利用各阶段的关系,逐个求解

动态规划算法通常用于求解具有某种最优性质的问题。在这类问题中,可能会有许多可行解。每一个解都对应于一个值,我们希望找到具有最优值的解。动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次。如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间。我们可以用一个表来记录所有已解的子问题的答案。不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中。这就是动态规划法的基本思路。具体的动态规划算法多种多样,但它们具有相同的填表格式。

解题思路:

一个是递归,一个是斐波那契数列的转化

climbStairsRecur(n) = climbStairsRecur(n-1) + climbStairsRecur(n-2);

res[0] = 1;
        res[1] = 1;
        for (int i = 2; i <= n; i++)
        {
            res[i] = res[i-1] + res[i-2];
        }
        return res[n];  

最终代码:

public class Solution {
    public int climbStairs(int n) {
        int zero = 0, one = 1,all=1;
        for (int i = 1; i <= n; i++){
            all = zero + one;
            zero = one;
            one = all;
        }
        return all;
    }
}

LeetCode之旅(16)-Climbing Stairs的更多相关文章

  1. leetcode 746. Min Cost Climbing Stairs(easy understanding dp solution)

    leetcode 746. Min Cost Climbing Stairs(easy understanding dp solution) On a staircase, the i-th step ...

  2. [LeetCode] 746. Min Cost Climbing Stairs 爬楼梯的最小损失

    On a staircase, the i-th step has some non-negative cost cost[i] assigned (0 indexed). Once you pay ...

  3. LeetCode 70. 爬楼梯(Climbing Stairs)

    70. 爬楼梯 70. Climbing Stairs 题目描述 假设你正在爬楼梯.需要 n 阶你才能到达楼顶. 每次你可以爬 1 或 2 个台阶.你有多少种不同的方法可以爬到楼顶呢? 注意: 给定 ...

  4. LeetCode练题——70. Climbing Stairs

    1.题目 70. Climbing Stairs——Easy You are climbing a stair case. It takes n steps to reach to the top. ...

  5. LN : leetcode 746 Min Cost Climbing Stairs

    lc 746 Min Cost Climbing Stairs 746 Min Cost Climbing Stairs On a staircase, the i-th step has some ...

  6. LeetCode之“动态规划”:Climbing Stairs

    题目链接 题目要求 You are climbing a stair case. It takes n steps to reach to the top. Each time you can eit ...

  7. [LeetCode&Python] Problem 70. Climbing Stairs

    You are climbing a stair case. It takes n steps to reach to the top. Each time you can either climb ...

  8. LeetCode(70) Climbing Stairs

    题目 You are climbing a stair case. It takes n steps to reach to the top. Each time you can either cli ...

  9. LeetCode 746. Min Cost Climbing Stairs (使用最小花费爬楼梯)

    题目标签:Dynamic Programming 题目给了我们一组 cost,让我们用最小的cost 走完楼梯,可以从index 0 或者 index 1 出发. 因为每次可以选择走一步,还是走两步, ...

  10. 【leetcode❤python】70. Climbing Stairs

    #Method1:动态规划##当有n个台阶时,可供选择的走法可以分两类:###1,先跨一阶再跨完剩下n-1阶:###2,先跨2阶再跨完剩下n-2阶.###所以n阶的不同走法的数目是n-1阶和n-2阶的 ...

随机推荐

  1. 7.0、Android Studio命令行工具

    命令行工具分成SDK工具和平台工具. SDK工具 SDK工具跟随SDK安装包安装并随时更新. Virtual Device 工具 1. Android Virtual Device Manager 提 ...

  2. UE4使用C++创建枚举变量适用于C++与蓝图

    这个月勉勉强强才写了一篇,都快月底了,都还没有写第二篇博客的冲动,证明这个月确实收获甚少,有点状态不佳,懒毒入骨啊.刚刚看了这个月其实已经写了三篇,然而事实是这博客还有另外一个人也在更新文章,博主并没 ...

  3. 查全率(召回率)、精度(准确率)和F值

    文献中的recall rate(查全率或召回率) and precision(精度)是很重要的概念.可惜很多中文网站讲的我都稀里糊涂,只好用google查了个英文的,草翻如下:召回率和精度定义: 从一 ...

  4. Cocos2D iOS之旅:如何写一个敲地鼠游戏(一):高清屏显示和UIKit

    大熊猫猪·侯佩原创或翻译作品.欢迎转载,转载请注明出处. 如果觉得写的不好请告诉我,如果觉得不错请多多支持点赞.谢谢! hopy ;) 免责申明:本博客提供的所有翻译文章原稿均来自互联网,仅供学习交流 ...

  5. 精通CSS+DIV网页样式与布局--页面和浏览器元素

    在页面和浏览器中,除了文字.图片.表格.表单等,还有很多各种各样的元素,在上篇博文中,小编主要简单的介绍了一下在CSS中如何设置表格和表单,今天小编主要简单介绍一下丰富的超链接特效.鼠标特效.页面滚动 ...

  6. 利用openssl管理证书及SSL编程第1部分: openssl证书管理

    利用openssl管理证书及SSL编程第1部分 参考:1) 利用openssl创建一个简单的CAhttp://www.cppblog.com/flyonok/archive/2010/10/30/13 ...

  7. Uva - 11853 - Paintball

    先判断是否有解,从上到下dfs判断连通性,如果有从顶部到底部连通图,则无解.再判断最北的进出位置,从上边界开始遍历,沿途检查与边界相交的圆.这些圆的左边界的交点中最靠南边的一个就是所有的最北进入位置, ...

  8. 12.1、Libgdx的图像之持续性和非持续性渲染

    (官网:www.libgdx.cn) Libgdx在默认情况下,渲染现成调用render()方法进行持续性渲染.频率取决于你的硬件设备. 有时候有些游戏中并不需要持续性的渲染,为了省电,可以关掉持续性 ...

  9. JSON 的数据转换格式(DataTable或DataSet) -善良公社项目

    这两天在使用JqueryEasyUI框架绑定数据并实现自动分页时,由于框架的限制需要使用Json数据的来传递与获取数据: JSON的全称是JavaScript Object Notation, 是一种 ...

  10. Mahout推荐算法之ItemBased

    Mahout推荐之ItemBased 一.   算法原理 (一)    基本原理 如下图评分矩阵所示:行为user,列为item. 图(1) 该算法的原理: 1.  计算Item之间的相似度. 2.  ...