题目描述

有一个 n 个元素的数组,每个元素初始均为 0。有 m 条指令,要么让其中一段连续序列数字反转——0 变 1,1 变 0(操作 1),要么询问某个元素的值(操作 2)。 例如当 n = 20 时,10 条指令如下:

输入输出格式

输入格式:

第一行包含两个整数 n, m,表示数组的长度和指令的条数; 以下 m 行,每行的第一个数 t 表示操作的种类:

若 t = 1,则接下来有两个数 L, R,表示区间 [L, R] 的每个数均反转; 若 t = 2,则接下来只有一个数 i,表示询问的下标。

输出格式:

每个操作 2 输出一行(非 0 即 1),表示每次操作 2 的回答。

输入输出样例

输入样例#1:

20 10
1 1 10
2 6
2 12
1 5 12
2 6
2 15
1 6 16
1 11 17
2 12
2 6
输出样例#1:

1
0
0
0
1
1

说明

对于 50% 的数据,1 ≤ n ≤ 10^3, 1 ≤ m ≤ 10^4; 对于 100% 的数据,1 ≤ n ≤ 10^5, 1 ≤ m ≤ 5 × 10^5,保证 L ≤ R。

线段树的区间修改,单点查询,似乎并不用建树,建树好像还有问题

#include<bits/stdc++.h>
using namespace std;
const int maxn=1e6+;
int xxoo[maxn];
int n,m,L,R,opt,x;
void pushdown(int now)
{
if(xxoo[now])
{
xxoo[now*]^=;
xxoo[now*+]^=;
xxoo[now]=;
}
}
void modify(int now,int l,int r,int stdl,int stdr)
{
if(stdl>=l&&stdr<=r)
{
xxoo[now]^=;
return;
}
pushdown(now);
int mid=(stdl+stdr)>>;
if(l<=mid)
{
modify(now<<,l,r,stdl,mid);
}
if(r>mid)
{
modify(now<<|,l,r,mid+,stdr);
}
}
int query(int now,int x,int stdl,int stdr)
{
if(stdl==stdr)
{
return xxoo[now];
}
pushdown(now);
int mid=(stdl+stdr)>>;
if(x<=mid)
{
return query(now<<,x,stdl,mid);
}
else
{
return query(now<<|,x,mid+,stdr);
}
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++)
{
scanf("%d",&opt);
if(opt==)
{
scanf("%d%d",&L,&R);
modify(,L,R,,n);
}
else
{
scanf("%d",&x);
printf("%d\n",query(,x,,n));
}
}
return ;
}

错误代码(多了一个建树)

#include<bits/stdc++.h>
using namespace std;
const int maxn=1e6+;
struct node
{
int l;
int r;
int lazyxor;
int value;
int sum;
}tree[maxn*];
int n,m,L,R,opt,x;
void build(int now,int l,int r)
{
tree[now].l=l;
tree[now].r=r;
tree[now].lazyxor=;
if(l==r)
{
tree[now].value=tree[now].sum=;
return;
}
int mid=(l+r)>>;
build(now<<,l,mid);
build(now<<|,mid+,r);
tree[now].sum=tree[now*].sum+tree[now*+].sum;
}
void pushdown(int now)
{
if(tree[now].lazyxor)
{
tree[now*].lazyxor^=;
tree[now*+].lazyxor^=;
tree[now].lazyxor=;
}
}
void modify(int now,int l,int r)
{
if(tree[now].l>=l&&tree[now].r<=r)
{
tree[now].lazyxor^=;
return;
}
pushdown(now);
int mid=(tree[now].l+tree[now].r)>>;
if(l<=mid)
{
modify(now<<,l,mid);
}
if(r>mid)
{
modify(now<<|,mid+,r);
}
}
int query(int now,int x,int l,int r)
{
if(tree[now].l==tree[now].r)
{
return tree[now].lazyxor;
}
pushdown(now);
int mid=(tree[now].l+tree[now].r)>>;
if(x<=mid)
{
return query(now*,x,l,r);
}
else
{
return query(now*+,x,l,r);
}
}
int main()
{
scanf("%d%d",&n,&m);
build(,,n);
for(int i=;i<=m;i++)
{
scanf("%d",&opt);
if(opt==)
{
scanf("%d%d",&L,&R);
modify(,L,R);
}
else
{
scanf("%d",&x);
printf("%d\n",query(,x,,n));
}
}
return ;
}

P5057 [CQOI2006]简单题的更多相关文章

  1. 洛谷 P5057 [CQOI2006]简单题 题解

    P5057 [CQOI2006]简单题 题目描述 有一个 n 个元素的数组,每个元素初始均为 0.有 m 条指令,要么让其中一段连续序列数字反转--0 变 1,1 变 0(操作 1),要么询问某个元素 ...

  2. P5057 [CQOI2006]简单题(线段树)

    果然简单题,5分钟紫题++ 代码 #include <cstdio> #include <algorithm> #include <cstring> using n ...

  3. 洛谷P5057 [CQOI2006]简单题(线段树)

    题意 题目链接 Sol 紫色的线段树板子题??... #include<iostream> #include<cstdio> #include<cmath> usi ...

  4. 洛谷 P5057 [CQOI2006]简单题(树状数组)

    嗯... 题目链接:https://www.luogu.org/problem/P5057 首先发现这道题中只有0和1,所以肯定与二进制有关.然后发现这道题需要支持区间更改和单点查询操作,所以首先想到 ...

  5. 洛谷 P5057 [CQOI2006]简单题 (树状数组,位运算)

    题意:有一个长度为\(n\)的数组,进行\(m\)次操作,每次读入一个值\(t\),如果\(t=1\),则将区间\([l,r]\)的数字反转,若\(t=2\),则查询下标为\(i\)的值. 题解:树状 ...

  6. [洛谷P5057][CQOI2006]简单题

    题目大意:有一个长度为$n$的$01$串,两个操作: $1\;l\;r:$把区间$[l,r]$翻转($0->1,1->0$) $2\;p:$求第$p$位是什么 题解:维护前缀异或和,树状数 ...

  7. P5057 [CQOI2006]简单题 前缀异或差分/树状数组

    好思路,好思路... 思路:前缀异或差分 提交:1次 题解:区间修改,单点查询,树状数组,如思路$qwq$ #include<cstdio> #include<iostream> ...

  8. P5057 【[CQOI2006]简单题】

    洛谷P5057[CQOI2006]简单题 差分 树状数组基本操作不说了,主要想记录一下异或下的差分 a数组为每一位的真实值(假设\(a[0]=0\)),t为差分后的数组 则\(t[i]=a[i]\)^ ...

  9. 「CQOI2006」简单题 线段树

    「CQOI2006」简单题 线段树 水.区间修改,单点查询.用线段树维护区间\([L,R]\)内的所有\(1\)的个数,懒标记表示为当前区间是否需要反转(相对于区间当前状态),下方标记时懒标记取反即可 ...

随机推荐

  1. spring的理解

    看过<fate系列>的博友知道,这是一个七位英灵的圣杯争夺战争.今天主要来谈谈圣杯的容器概念,以便对spring的理解. 圣杯: 圣杯本身是没有实体的,而是将具有魔术回路的存在(人)作为“ ...

  2. PC打开多个微信

    打开记事本 在哪个盘就打开哪个盘 例如我的D盘 输入这一串 D:CD 微信路径start WeChat.exe&WeChat.exe 保存然后改后缀名为.bat 然后运行 运行前要关掉之前开的 ...

  3. C#之使类型参数--泛型

    1.泛型是什么 泛型的就是“通用类型”,它可以代替任何的数据类型,使类型参数化,从而达到只实现一个方法就可以操作多种数据类型的目的. 2.为什么使用泛型 举一个比较两个数大小的例子: 以上例子实现in ...

  4. (七) Keras 绘制网络结构和cpu,gpu切换

    视频学习来源 https://www.bilibili.com/video/av40787141?from=search&seid=17003307842787199553 笔记 首先安装py ...

  5. datatable动态列处理,重绘表格(敲黑板,划重点!!!我肝了一天半才彻底弄懂这个东西,TAT)

    datatable动态列处理,重绘表格 前言:至于动态列的绘画,我前面博客已经写过了,就是动态列的配置问题,不懂的去我博客看下,今天要写的呢,就是你已经写了一个动态列在datatable,现在你想重新 ...

  6. 测者的测试技术手册:Junit执行单元测试用例成功,mvn test却失败的问题和解决方法

    今天遇见了一个奇怪的问题,在IDE中run unit test,全部cases都成功了,但是后来通过mvn test运行case确保错了.在寻求原因的同时也找到了对应的解决方法. Run Unit T ...

  7. 利用Navicat高效率postgresql转mysql数据库

    本人很喜欢postgresql数据库,也一直认为postgresql比mysql要更好更强大. 可生态环境太差了,无奈,最近要把一个小站转成mysql数据库. 小站主要表数据110万,pg_dump备 ...

  8. vue(4)—— vue的过滤器,监听属性,生命周期函数,获取DOM元素

    过滤器 vue允许自定义过滤器,我个人认为,过滤器有两种,一种是对数据的清洗过滤,一种是对数据切换的动画过滤 数据切换的动画过滤 这里还是利用前面的动态组件的例子: 这里由于没办法展示动画效果,代码如 ...

  9. 运算符和Scanner的使用

    一 1.运算符:对常量或者变量进行操作的符号 2.算术运算符: 1)四则运算:+ - * / 2)取模运算:%(只看余数) 3)字符串连接:任何数据类型和字符串连在一起,都是字符串结果(+来连接) 4 ...

  10. LeetCode算法题-Reach a Number(Java实现)

    这是悦乐书的第310次更新,第331篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第179题(顺位题号是754).你站在无限数字线的0号位置.在目的地有个target.在 ...