bzoj [Noi2002]Savage 扩展欧几里得
枚举m,n^2判断
对于野人i,j,(H[i]+x*S[i])%m==(H[j]+x*S[j])%m,且x<=O[i]&&x<=O[j],他们才有可能相遇
化简得:(S[i]-S[j])*x+y*m=C[j]-C[i],扩欧解x最小值,判断
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
#define N 18
using namespace std;
int H[N],S[N],O[N],n,m,X,Y;
bool bo;
int exgcd(int a,int b,int &x,int &y){
if(b==0){
x=1;y=0;
return a;
}
int gcd=exgcd(b,a%b,x,y);
int t=x;
x=y;
y=t-(a/b)*x;
return gcd;
}
bool judge(int x,int y,int mm){
//printf("%d %d %d\n",x,y,mm);
if(S[x]<S[y]) swap(x,y);
int a=S[x]-S[y],b=mm,c=H[y]-H[x];
int d=exgcd(a,b,X,Y);
if(c%d!=0) return 0;
X*=c/d;
int bd=b/d;
X=((X%bd)+bd)%bd;
if(X<=O[x]&&X<=O[y]) return 1;
return 0;
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d%d%d",&H[i],&S[i],&O[i]);
m=max(m,H[i]); H[i]--;
}
for(;;m++){
bo=0;
for(int i=1;i<=n;i++){
for(int j=i+1;j<=n;j++)
if(judge(i,j,m)){bo=1;break;}
if(bo==1)break;
}if(bo==0)break;
}
printf("%d\n",m);
return 0;
}
bzoj [Noi2002]Savage 扩展欧几里得的更多相关文章
- bzoj1407 [Noi2002]Savage——扩展欧几里得
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1407 看到一定有解,而且小于10^6,所以可以枚举: 判断一个解是否可行,就两两判断野人 i ...
- [Noi2002]Savage(欧几里得拓展)
题意:在一个岛上,有n个野人.这些人开始住在c号洞穴,每一年走p个洞,而且他的生命有L年.问如果岛上的洞穴为一个圈,那么这个圈至少有多少个,才能使他们每年都不在同一个洞穴里. 分析:先假设一种简单的情 ...
- BZOJ 1407 Savage(拓展欧几里得)
这题的时间复杂度真玄学... O(m*n^2).1e8也能过啊... 首先题目保证m<=1e6. 这启发我们枚举或者二分答案? 但是答案不满足单调性,考虑从小到大枚举m. 对于每一个m,枚举两个 ...
- BZOJ 1965 洗牌(扩展欧几里得)
容易发现,对于牌堆里第x张牌,在一次洗牌后会变成2*x%(n+1)的位置. 于是问题就变成了求x*2^m%(n+1)=L,x在[1,n]范围内的解. 显然可以用扩展欧几里得求出. # include ...
- JZYZOJ1372 [noi2002]荒岛野人 扩展欧几里得
http://172.20.6.3/Problem_Show.asp?id=1372 想法其实很好想,但是我扩展欧几里得还是用得不熟练,几乎是硬套模板,大概因为今天一个下午状态都不大好.扩展欧几里得算 ...
- bzoj 2242: [SDOI2011]计算器【扩展欧几里得+快速幂+BSGS】
第一问快速幂板子 第二问把式子转化为\( xy\equiv Z(mod P)\rightarrow xy+bP=z \),然后扩展欧几里得 第三问BSGS板子 #include<iostream ...
- Intel Code Challenge Final Round (Div. 1 + Div. 2, Combined) C.Ray Tracing (模拟或扩展欧几里得)
http://codeforces.com/contest/724/problem/C 题目大意: 在一个n*m的盒子里,从(0,0)射出一条每秒位移为(1,1)的射线,遵从反射定律,给出k个点,求射 ...
- UVA 12169 Disgruntled Judge 枚举+扩展欧几里得
题目大意:有3个整数 x[1], a, b 满足递推式x[i]=(a*x[i-1]+b)mod 10001.由这个递推式计算出了长度为2T的数列,现在要求输入x[1],x[3],......x[2T- ...
- UVA 10090 Marbles 扩展欧几里得
来源:http://www.cnblogs.com/zxhl/p/5106678.html 大致题意:给你n个球,给你两种盒子.第一种盒子每个盒子c1美元,可以恰好装n1个球:第二种盒子每个盒子c2元 ...
随机推荐
- oracle 修改 字段名称
暂时应该没有对应的方法,所以我用自己想好的方法去修改 /*修改原字段名name为name_tmp,是将想改名称的字段改为没用/临时的字段*/ Alter table 表名 rename column ...
- Spring Boot 2.0.1 入门教程
简介 Spring Boot是Spring提供的一套基础配置环境,可以用来快速开发生产环境级别的产品.尤其适合开发微服务架构,省去了不少配置麻烦.比如用到Spring MVC时,只需把spring-b ...
- JavaScript继承详解
面向对象与基于对象 在传统面向对象的语言中,有两个非常重要的概念 - 类和实例. 类定义了一类事物公共的行为和方法:而实例则是类的一个具体实现. 我们还知道,面向对象编程有三个重要的概念 - 封装.继 ...
- pslq常用操作
1,登录后默认自动选中My Objects 默认情况下,PLSQL Developer登录后,Brower里会选择All objects,如果你登录的用户是dba,要展开tables目录,正常情况都 ...
- .net找List1和List2的差集
有个需求是找两个自定义类泛型集合的差集: class Person { public string Name{get; set;} public string Country{get; set;} } ...
- maven常见配置
maven surefire plugin 默认执行失败后,不会继续执行,需要在</configuration>中设置参数 <testFailureIgnore>true< ...
- VirtualBox上安装64位系统
http://blog.csdn.net/mal327/article/details/6597263 原来VirtualBox安装64位的系统需要满足以下条件: 1.64位的cpu2.安装的系统必须 ...
- Ocelot中文文档-Qos服务质量
目前Ocelot支持一种QoS功能. 如果您希望在请求向下游服务时使用断路,则可以在ReRoute中进行设置. 这个功能使用了一个名为Polly的.NET库,这个库很棒,在这里可以找到它. 添加如下配 ...
- ng-change事件中如何获取$event和如何在子元素事件中阻止调用父级元素事件(阻止事件冒泡)
闲聊: 今天小颖要实现一个当改变了select内容后弹出一个弹框,并且点击select父元素使得弹框消失,这就得用到阻止事件的冒泡了:$event.stopPropagation(),然而小颖发现,在 ...
- JavaScript匿名自执行函数~function(){}
原博客:https://blog.csdn.net/yaojxing/article/details/72784774 1.匿名函数的常见场景 js中的匿名函数是一种很常见的函数类型,比较常见的场景: ...