转自:https://blog.csdn.net/leumber/article/details/78043675

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/leumber/article/details/78043675

DES和3DES加密算法C语言实现
记录DES和3DES加密算法最简洁易懂的C语言源码
主要是要用到CBC这部分的算法,后边也有一个工具可以提供验证,因为网上的工具含有CBC的很少,也方便大家吧


#define MBEDTLS_DES_ENCRYPT 1
#define MBEDTLS_DES_DECRYPT 0 #define MBEDTLS_ERR_DES_INVALID_INPUT_LENGTH -0x0002 /**< The data input has an invalid length. */ #define MBEDTLS_DES_KEY_SIZE 8
#define DES_KEY_SIZE (8)
#define DES3_KEY2_SIZE (16)
#define DES3_KEY3_SIZE (24) typedef struct
{
uint32_t sk[32]; /*!< DES subkeys */
}des_context; /**
* \brief Triple-DES context structure
*/
typedef struct
{
uint32_t sk[96]; /*!< 3DES subkeys */
}des3_context; #define DES_C #if defined(DES_C) #include "des.h" #include <string.h>
#include <stdlib.h> #if !defined(DES_ALT) /* Implementation that should never be optimized out by the compiler */
static void zeroize( void *v, size_t n ) {
volatile unsigned char *p = (unsigned char*)v; while( n-- ) *p++ = 0;
} /*
* 32-bit integer manipulation macros (big endian)
*/
#ifndef GET_UINT32_BE
#define GET_UINT32_BE(n,b,i) \
{ \
(n) = ( (uint32_t) (b)[(i) ] << 24 ) \
| ( (uint32_t) (b)[(i) + 1] << 16 ) \
| ( (uint32_t) (b)[(i) + 2] << 8 ) \
| ( (uint32_t) (b)[(i) + 3] ); \
}
#endif #ifndef PUT_UINT32_BE
#define PUT_UINT32_BE(n,b,i) \
{ \
(b)[(i) ] = (unsigned char) ( (n) >> 24 ); \
(b)[(i) + 1] = (unsigned char) ( (n) >> 16 ); \
(b)[(i) + 2] = (unsigned char) ( (n) >> 8 ); \
(b)[(i) + 3] = (unsigned char) ( (n) ); \
}
#endif /*
* Expanded DES S-boxes
*/
static const uint32_t SB1[64] =
{
0x01010400, 0x00000000, 0x00010000, 0x01010404,
0x01010004, 0x00010404, 0x00000004, 0x00010000,
0x00000400, 0x01010400, 0x01010404, 0x00000400,
0x01000404, 0x01010004, 0x01000000, 0x00000004,
0x00000404, 0x01000400, 0x01000400, 0x00010400,
0x00010400, 0x01010000, 0x01010000, 0x01000404,
0x00010004, 0x01000004, 0x01000004, 0x00010004,
0x00000000, 0x00000404, 0x00010404, 0x01000000,
0x00010000, 0x01010404, 0x00000004, 0x01010000,
0x01010400, 0x01000000, 0x01000000, 0x00000400,
0x01010004, 0x00010000, 0x00010400, 0x01000004,
0x00000400, 0x00000004, 0x01000404, 0x00010404,
0x01010404, 0x00010004, 0x01010000, 0x01000404,
0x01000004, 0x00000404, 0x00010404, 0x01010400,
0x00000404, 0x01000400, 0x01000400, 0x00000000,
0x00010004, 0x00010400, 0x00000000, 0x01010004
}; static const uint32_t SB2[64] =
{
0x80108020, 0x80008000, 0x00008000, 0x00108020,
0x00100000, 0x00000020, 0x80100020, 0x80008020,
0x80000020, 0x80108020, 0x80108000, 0x80000000,
0x80008000, 0x00100000, 0x00000020, 0x80100020,
0x00108000, 0x00100020, 0x80008020, 0x00000000,
0x80000000, 0x00008000, 0x00108020, 0x80100000,
0x00100020, 0x80000020, 0x00000000, 0x00108000,
0x00008020, 0x80108000, 0x80100000, 0x00008020,
0x00000000, 0x00108020, 0x80100020, 0x00100000,
0x80008020, 0x80100000, 0x80108000, 0x00008000,
0x80100000, 0x80008000, 0x00000020, 0x80108020,
0x00108020, 0x00000020, 0x00008000, 0x80000000,
0x00008020, 0x80108000, 0x00100000, 0x80000020,
0x00100020, 0x80008020, 0x80000020, 0x00100020,
0x00108000, 0x00000000, 0x80008000, 0x00008020,
0x80000000, 0x80100020, 0x80108020, 0x00108000
}; static const uint32_t SB3[64] =
{
0x00000208, 0x08020200, 0x00000000, 0x08020008,
0x08000200, 0x00000000, 0x00020208, 0x08000200,
0x00020008, 0x08000008, 0x08000008, 0x00020000,
0x08020208, 0x00020008, 0x08020000, 0x00000208,
0x08000000, 0x00000008, 0x08020200, 0x00000200,
0x00020200, 0x08020000, 0x08020008, 0x00020208,
0x08000208, 0x00020200, 0x00020000, 0x08000208,
0x00000008, 0x08020208, 0x00000200, 0x08000000,
0x08020200, 0x08000000, 0x00020008, 0x00000208,
0x00020000, 0x08020200, 0x08000200, 0x00000000,
0x00000200, 0x00020008, 0x08020208, 0x08000200,
0x08000008, 0x00000200, 0x00000000, 0x08020008,
0x08000208, 0x00020000, 0x08000000, 0x08020208,
0x00000008, 0x00020208, 0x00020200, 0x08000008,
0x08020000, 0x08000208, 0x00000208, 0x08020000,
0x00020208, 0x00000008, 0x08020008, 0x00020200
}; static const uint32_t SB4[64] =
{
0x00802001, 0x00002081, 0x00002081, 0x00000080,
0x00802080, 0x00800081, 0x00800001, 0x00002001,
0x00000000, 0x00802000, 0x00802000, 0x00802081,
0x00000081, 0x00000000, 0x00800080, 0x00800001,
0x00000001, 0x00002000, 0x00800000, 0x00802001,
0x00000080, 0x00800000, 0x00002001, 0x00002080,
0x00800081, 0x00000001, 0x00002080, 0x00800080,
0x00002000, 0x00802080, 0x00802081, 0x00000081,
0x00800080, 0x00800001, 0x00802000, 0x00802081,
0x00000081, 0x00000000, 0x00000000, 0x00802000,
0x00002080, 0x00800080, 0x00800081, 0x00000001,
0x00802001, 0x00002081, 0x00002081, 0x00000080,
0x00802081, 0x00000081, 0x00000001, 0x00002000,
0x00800001, 0x00002001, 0x00802080, 0x00800081,
0x00002001, 0x00002080, 0x00800000, 0x00802001,
0x00000080, 0x00800000, 0x00002000, 0x00802080
}; static const uint32_t SB5[64] =
{
0x00000100, 0x02080100, 0x02080000, 0x42000100,
0x00080000, 0x00000100, 0x40000000, 0x02080000,
0x40080100, 0x00080000, 0x02000100, 0x40080100,
0x42000100, 0x42080000, 0x00080100, 0x40000000,
0x02000000, 0x40080000, 0x40080000, 0x00000000,
0x40000100, 0x42080100, 0x42080100, 0x02000100,
0x42080000, 0x40000100, 0x00000000, 0x42000000,
0x02080100, 0x02000000, 0x42000000, 0x00080100,
0x00080000, 0x42000100, 0x00000100, 0x02000000,
0x40000000, 0x02080000, 0x42000100, 0x40080100,
0x02000100, 0x40000000, 0x42080000, 0x02080100,
0x40080100, 0x00000100, 0x02000000, 0x42080000,
0x42080100, 0x00080100, 0x42000000, 0x42080100,
0x02080000, 0x00000000, 0x40080000, 0x42000000,
0x00080100, 0x02000100, 0x40000100, 0x00080000,
0x00000000, 0x40080000, 0x02080100, 0x40000100
}; static const uint32_t SB6[64] =
{
0x20000010, 0x20400000, 0x00004000, 0x20404010,
0x20400000, 0x00000010, 0x20404010, 0x00400000,
0x20004000, 0x00404010, 0x00400000, 0x20000010,
0x00400010, 0x20004000, 0x20000000, 0x00004010,
0x00000000, 0x00400010, 0x20004010, 0x00004000,
0x00404000, 0x20004010, 0x00000010, 0x20400010,
0x20400010, 0x00000000, 0x00404010, 0x20404000,
0x00004010, 0x00404000, 0x20404000, 0x20000000,
0x20004000, 0x00000010, 0x20400010, 0x00404000,
0x20404010, 0x00400000, 0x00004010, 0x20000010,
0x00400000, 0x20004000, 0x20000000, 0x00004010,
0x20000010, 0x20404010, 0x00404000, 0x20400000,
0x00404010, 0x20404000, 0x00000000, 0x20400010,
0x00000010, 0x00004000, 0x20400000, 0x00404010,
0x00004000, 0x00400010, 0x20004010, 0x00000000,
0x20404000, 0x20000000, 0x00400010, 0x20004010
}; static const uint32_t SB7[64] =
{
0x00200000, 0x04200002, 0x04000802, 0x00000000,
0x00000800, 0x04000802, 0x00200802, 0x04200800,
0x04200802, 0x00200000, 0x00000000, 0x04000002,
0x00000002, 0x04000000, 0x04200002, 0x00000802,
0x04000800, 0x00200802, 0x00200002, 0x04000800,
0x04000002, 0x04200000, 0x04200800, 0x00200002,
0x04200000, 0x00000800, 0x00000802, 0x04200802,
0x00200800, 0x00000002, 0x04000000, 0x00200800,
0x04000000, 0x00200800, 0x00200000, 0x04000802,
0x04000802, 0x04200002, 0x04200002, 0x00000002,
0x00200002, 0x04000000, 0x04000800, 0x00200000,
0x04200800, 0x00000802, 0x00200802, 0x04200800,
0x00000802, 0x04000002, 0x04200802, 0x04200000,
0x00200800, 0x00000000, 0x00000002, 0x04200802,
0x00000000, 0x00200802, 0x04200000, 0x00000800,
0x04000002, 0x04000800, 0x00000800, 0x00200002
}; static const uint32_t SB8[64] =
{
0x10001040, 0x00001000, 0x00040000, 0x10041040,
0x10000000, 0x10001040, 0x00000040, 0x10000000,
0x00040040, 0x10040000, 0x10041040, 0x00041000,
0x10041000, 0x00041040, 0x00001000, 0x00000040,
0x10040000, 0x10000040, 0x10001000, 0x00001040,
0x00041000, 0x00040040, 0x10040040, 0x10041000,
0x00001040, 0x00000000, 0x00000000, 0x10040040,
0x10000040, 0x10001000, 0x00041040, 0x00040000,
0x00041040, 0x00040000, 0x10041000, 0x00001000,
0x00000040, 0x10040040, 0x00001000, 0x00041040,
0x10001000, 0x00000040, 0x10000040, 0x10040000,
0x10040040, 0x10000000, 0x00040000, 0x10001040,
0x00000000, 0x10041040, 0x00040040, 0x10000040,
0x10040000, 0x10001000, 0x10001040, 0x00000000,
0x10041040, 0x00041000, 0x00041000, 0x00001040,
0x00001040, 0x00040040, 0x10000000, 0x10041000
}; /*
* PC1: left and right halves bit-swap
*/
static const uint32_t LHs[16] =
{
0x00000000, 0x00000001, 0x00000100, 0x00000101,
0x00010000, 0x00010001, 0x00010100, 0x00010101,
0x01000000, 0x01000001, 0x01000100, 0x01000101,
0x01010000, 0x01010001, 0x01010100, 0x01010101
}; static const uint32_t RHs[16] =
{
0x00000000, 0x01000000, 0x00010000, 0x01010000,
0x00000100, 0x01000100, 0x00010100, 0x01010100,
0x00000001, 0x01000001, 0x00010001, 0x01010001,
0x00000101, 0x01000101, 0x00010101, 0x01010101,
}; /*
* Initial Permutation macro
*/
#define DES_IP(X,Y) \
{ \
T = ((X >> 4) ^ Y) & 0x0F0F0F0F; Y ^= T; X ^= (T << 4); \
T = ((X >> 16) ^ Y) & 0x0000FFFF; Y ^= T; X ^= (T << 16); \
T = ((Y >> 2) ^ X) & 0x33333333; X ^= T; Y ^= (T << 2); \
T = ((Y >> 8) ^ X) & 0x00FF00FF; X ^= T; Y ^= (T << 8); \
Y = ((Y << 1) | (Y >> 31)) & 0xFFFFFFFF; \
T = (X ^ Y) & 0xAAAAAAAA; Y ^= T; X ^= T; \
X = ((X << 1) | (X >> 31)) & 0xFFFFFFFF; \
} /*
* Final Permutation macro
*/
#define DES_FP(X,Y) \
{ \
X = ((X << 31) | (X >> 1)) & 0xFFFFFFFF; \
T = (X ^ Y) & 0xAAAAAAAA; X ^= T; Y ^= T; \
Y = ((Y << 31) | (Y >> 1)) & 0xFFFFFFFF; \
T = ((Y >> 8) ^ X) & 0x00FF00FF; X ^= T; Y ^= (T << 8); \
T = ((Y >> 2) ^ X) & 0x33333333; X ^= T; Y ^= (T << 2); \
T = ((X >> 16) ^ Y) & 0x0000FFFF; Y ^= T; X ^= (T << 16); \
T = ((X >> 4) ^ Y) & 0x0F0F0F0F; Y ^= T; X ^= (T << 4); \
} /*
* DES round macro
*/
#define DES_ROUND(X,Y) \
{ \
T = *SK++ ^ X; \
Y ^= SB8[ (T ) & 0x3F ] ^ \
SB6[ (T >> 8) & 0x3F ] ^ \
SB4[ (T >> 16) & 0x3F ] ^ \
SB2[ (T >> 24) & 0x3F ]; \
\
T = *SK++ ^ ((X << 28) | (X >> 4)); \
Y ^= SB7[ (T ) & 0x3F ] ^ \
SB5[ (T >> 8) & 0x3F ] ^ \
SB3[ (T >> 16) & 0x3F ] ^ \
SB1[ (T >> 24) & 0x3F ]; \
} #define SWAP(a,b) { uint32_t t = a; a = b; b = t; t = 0; } void des_init( des_context *ctx )
{
memset( ctx, 0, sizeof( des_context ) );
} void des_free( des_context *ctx )
{
if( ctx == NULL )
return; zeroize( ctx, sizeof( des_context ) );
} void des3_init( des3_context *ctx )
{
memset( ctx, 0, sizeof( des3_context ) );
} void des3_free( des3_context *ctx )
{
if( ctx == NULL )
return; zeroize( ctx, sizeof( des3_context ) );
} static const unsigned char odd_parity_table[128] = { 1, 2, 4, 7, 8,
11, 13, 14, 16, 19, 21, 22, 25, 26, 28, 31, 32, 35, 37, 38, 41, 42, 44,
47, 49, 50, 52, 55, 56, 59, 61, 62, 64, 67, 69, 70, 73, 74, 76, 79, 81,
82, 84, 87, 88, 91, 93, 94, 97, 98, 100, 103, 104, 107, 109, 110, 112,
115, 117, 118, 121, 122, 124, 127, 128, 131, 133, 134, 137, 138, 140,
143, 145, 146, 148, 151, 152, 155, 157, 158, 161, 162, 164, 167, 168,
171, 173, 174, 176, 179, 181, 182, 185, 186, 188, 191, 193, 194, 196,
199, 200, 203, 205, 206, 208, 211, 213, 214, 217, 218, 220, 223, 224,
227, 229, 230, 233, 234, 236, 239, 241, 242, 244, 247, 248, 251, 253,
254 }; void des_key_set_parity( unsigned char key[DES_KEY_SIZE] )
{
int i; for( i = 0; i < DES_KEY_SIZE; i++ )
key[i] = odd_parity_table[key[i] / 2];
} /*
* Check the given key's parity, returns 1 on failure, 0 on SUCCESS
*/
int des_key_check_key_parity( const unsigned char key[DES_KEY_SIZE] )
{
int i; for( i = 0; i < DES_KEY_SIZE; i++ )
if( key[i] != odd_parity_table[key[i] / 2] )
return( 1 ); return( 0 );
} /*
* Table of weak and semi-weak keys
*
* Source: http://en.wikipedia.org/wiki/Weak_key
*
* Weak:
* Alternating ones + zeros (0x0101010101010101)
* Alternating 'F' + 'E' (0xFEFEFEFEFEFEFEFE)
* '0xE0E0E0E0F1F1F1F1'
* '0x1F1F1F1F0E0E0E0E'
*
* Semi-weak:
* 0x011F011F010E010E and 0x1F011F010E010E01
* 0x01E001E001F101F1 and 0xE001E001F101F101
* 0x01FE01FE01FE01FE and 0xFE01FE01FE01FE01
* 0x1FE01FE00EF10EF1 and 0xE01FE01FF10EF10E
* 0x1FFE1FFE0EFE0EFE and 0xFE1FFE1FFE0EFE0E
* 0xE0FEE0FEF1FEF1FE and 0xFEE0FEE0FEF1FEF1
*
*/ #define WEAK_KEY_COUNT 16 static const unsigned char weak_key_table[WEAK_KEY_COUNT][DES_KEY_SIZE] =
{
{ 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01 },
{ 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE },
{ 0x1F, 0x1F, 0x1F, 0x1F, 0x0E, 0x0E, 0x0E, 0x0E },
{ 0xE0, 0xE0, 0xE0, 0xE0, 0xF1, 0xF1, 0xF1, 0xF1 }, { 0x01, 0x1F, 0x01, 0x1F, 0x01, 0x0E, 0x01, 0x0E },
{ 0x1F, 0x01, 0x1F, 0x01, 0x0E, 0x01, 0x0E, 0x01 },
{ 0x01, 0xE0, 0x01, 0xE0, 0x01, 0xF1, 0x01, 0xF1 },
{ 0xE0, 0x01, 0xE0, 0x01, 0xF1, 0x01, 0xF1, 0x01 },
{ 0x01, 0xFE, 0x01, 0xFE, 0x01, 0xFE, 0x01, 0xFE },
{ 0xFE, 0x01, 0xFE, 0x01, 0xFE, 0x01, 0xFE, 0x01 },
{ 0x1F, 0xE0, 0x1F, 0xE0, 0x0E, 0xF1, 0x0E, 0xF1 },
{ 0xE0, 0x1F, 0xE0, 0x1F, 0xF1, 0x0E, 0xF1, 0x0E },
{ 0x1F, 0xFE, 0x1F, 0xFE, 0x0E, 0xFE, 0x0E, 0xFE },
{ 0xFE, 0x1F, 0xFE, 0x1F, 0xFE, 0x0E, 0xFE, 0x0E },
{ 0xE0, 0xFE, 0xE0, 0xFE, 0xF1, 0xFE, 0xF1, 0xFE },
{ 0xFE, 0xE0, 0xFE, 0xE0, 0xFE, 0xF1, 0xFE, 0xF1 }
}; int des_key_check_weak( const unsigned char key[DES_KEY_SIZE] )
{
int i; for( i = 0; i < WEAK_KEY_COUNT; i++ )
if( memcmp( weak_key_table[i], key, DES_KEY_SIZE) == 0 )
return( 1 ); return( 0 );
} void des_setkey( uint32_t SK[32], const unsigned char key[DES_KEY_SIZE] )
{
int i;
uint32_t X, Y, T; GET_UINT32_BE( X, key, 0 );
GET_UINT32_BE( Y, key, 4 ); /*
* Permuted Choice 1
*/
T = ((Y >> 4) ^ X) & 0x0F0F0F0F; X ^= T; Y ^= (T << 4);
T = ((Y ) ^ X) & 0x10101010; X ^= T; Y ^= (T ); X = (LHs[ (X ) & 0xF] << 3) | (LHs[ (X >> 8) & 0xF ] << 2)
| (LHs[ (X >> 16) & 0xF] << 1) | (LHs[ (X >> 24) & 0xF ] )
| (LHs[ (X >> 5) & 0xF] << 7) | (LHs[ (X >> 13) & 0xF ] << 6)
| (LHs[ (X >> 21) & 0xF] << 5) | (LHs[ (X >> 29) & 0xF ] << 4); Y = (RHs[ (Y >> 1) & 0xF] << 3) | (RHs[ (Y >> 9) & 0xF ] << 2)
| (RHs[ (Y >> 17) & 0xF] << 1) | (RHs[ (Y >> 25) & 0xF ] )
| (RHs[ (Y >> 4) & 0xF] << 7) | (RHs[ (Y >> 12) & 0xF ] << 6)
| (RHs[ (Y >> 20) & 0xF] << 5) | (RHs[ (Y >> 28) & 0xF ] << 4); X &= 0x0FFFFFFF;
Y &= 0x0FFFFFFF; /*
* calculate subkeys
*/
for( i = 0; i < 16; i++ )
{
if( i < 2 || i == 8 || i == 15 )
{
X = ((X << 1) | (X >> 27)) & 0x0FFFFFFF;
Y = ((Y << 1) | (Y >> 27)) & 0x0FFFFFFF;
}
else
{
X = ((X << 2) | (X >> 26)) & 0x0FFFFFFF;
Y = ((Y << 2) | (Y >> 26)) & 0x0FFFFFFF;
} *SK++ = ((X << 4) & 0x24000000) | ((X << 28) & 0x10000000)
| ((X << 14) & 0x08000000) | ((X << 18) & 0x02080000)
| ((X << 6) & 0x01000000) | ((X << 9) & 0x00200000)
| ((X >> 1) & 0x00100000) | ((X << 10) & 0x00040000)
| ((X << 2) & 0x00020000) | ((X >> 10) & 0x00010000)
| ((Y >> 13) & 0x00002000) | ((Y >> 4) & 0x00001000)
| ((Y << 6) & 0x00000800) | ((Y >> 1) & 0x00000400)
| ((Y >> 14) & 0x00000200) | ((Y ) & 0x00000100)
| ((Y >> 5) & 0x00000020) | ((Y >> 10) & 0x00000010)
| ((Y >> 3) & 0x00000008) | ((Y >> 18) & 0x00000004)
| ((Y >> 26) & 0x00000002) | ((Y >> 24) & 0x00000001); *SK++ = ((X << 15) & 0x20000000) | ((X << 17) & 0x10000000)
| ((X << 10) & 0x08000000) | ((X << 22) & 0x04000000)
| ((X >> 2) & 0x02000000) | ((X << 1) & 0x01000000)
| ((X << 16) & 0x00200000) | ((X << 11) & 0x00100000)
| ((X << 3) & 0x00080000) | ((X >> 6) & 0x00040000)
| ((X << 15) & 0x00020000) | ((X >> 4) & 0x00010000)
| ((Y >> 2) & 0x00002000) | ((Y << 8) & 0x00001000)
| ((Y >> 14) & 0x00000808) | ((Y >> 9) & 0x00000400)
| ((Y ) & 0x00000200) | ((Y << 7) & 0x00000100)
| ((Y >> 7) & 0x00000020) | ((Y >> 3) & 0x00000011)
| ((Y << 2) & 0x00000004) | ((Y >> 21) & 0x00000002);
}
} /*
* DES key schedule (56-bit, encryption)
*/
int des_setkey_enc( des_context *ctx, const unsigned char key[DES_KEY_SIZE] )
{
des_setkey( ctx->sk, key ); return( 0 );
} /*
* DES key schedule (56-bit, decryption)
*/
int des_setkey_dec( des_context *ctx, const unsigned char key[DES_KEY_SIZE] )
{
int i; des_setkey( ctx->sk, key ); for( i = 0; i < 16; i += 2 )
{
SWAP( ctx->sk[i ], ctx->sk[30 - i] );
SWAP( ctx->sk[i + 1], ctx->sk[31 - i] );
} return( 0 );
} static void des3_set2key( uint32_t esk[96],
uint32_t dsk[96],
const unsigned char key[DES_KEY_SIZE*2] )
{
int i; des_setkey( esk, key );
des_setkey( dsk + 32, key + 8 ); for( i = 0; i < 32; i += 2 )
{
dsk[i ] = esk[30 - i];
dsk[i + 1] = esk[31 - i]; esk[i + 32] = dsk[62 - i];
esk[i + 33] = dsk[63 - i]; esk[i + 64] = esk[i ];
esk[i + 65] = esk[i + 1]; dsk[i + 64] = dsk[i ];
dsk[i + 65] = dsk[i + 1];
}
} /*
* Triple-DES key schedule (112-bit, encryption)
*/
int des3_set2key_enc( des3_context *ctx,
const unsigned char key[DES_KEY_SIZE * 2] )
{
uint32_t sk[96]; des3_set2key( ctx->sk, sk, key );
zeroize( sk, sizeof( sk ) ); return( 0 );
} /*
* Triple-DES key schedule (112-bit, decryption)
*/
int des3_set2key_dec( des3_context *ctx,
const unsigned char key[DES_KEY_SIZE * 2] )
{
uint32_t sk[96]; des3_set2key( sk, ctx->sk, key );
zeroize( sk, sizeof( sk ) ); return( 0 );
} static void des3_set3key( uint32_t esk[96],
uint32_t dsk[96],
const unsigned char key[24] )
{
int i; des_setkey( esk, key );
des_setkey( dsk + 32, key + 8 );
des_setkey( esk + 64, key + 16 ); for( i = 0; i < 32; i += 2 )
{
dsk[i ] = esk[94 - i];
dsk[i + 1] = esk[95 - i]; esk[i + 32] = dsk[62 - i];
esk[i + 33] = dsk[63 - i]; dsk[i + 64] = esk[30 - i];
dsk[i + 65] = esk[31 - i];
}
} /*
* Triple-DES key schedule (168-bit, encryption)
*/
int des3_set3key_enc( des3_context *ctx,
const unsigned char key[DES_KEY_SIZE * 3] )
{
uint32_t sk[96]; des3_set3key( ctx->sk, sk, key );
zeroize( sk, sizeof( sk ) ); return( 0 );
} /*
* Triple-DES key schedule (168-bit, decryption)
*/
int des3_set3key_dec( des3_context *ctx,
const unsigned char key[DES_KEY_SIZE * 3] )
{
uint32_t sk[96]; des3_set3key( sk, ctx->sk, key );
zeroize( sk, sizeof( sk ) ); return( 0 );
} /*
* DES-ECB block encryption/decryption
*/ int des_crypt_ecb( des_context *ctx,
const unsigned char input[8],
unsigned char output[8] )
{
int i;
uint32_t X, Y, T, *SK; SK = ctx->sk; GET_UINT32_BE( X, input, 0 );
GET_UINT32_BE( Y, input, 4 ); DES_IP( X, Y ); for( i = 0; i < 8; i++ )
{
DES_ROUND( Y, X );
DES_ROUND( X, Y );
} DES_FP( Y, X ); PUT_UINT32_BE( Y, output, 0 );
PUT_UINT32_BE( X, output, 4 ); return( 0 );
} /*
* DES-CBC buffer encryption/decryption
*/
int des_crypt_cbc( des_context *ctx,
int mode,
size_t length,
unsigned char iv[8],
const unsigned char *input,
unsigned char *output )
{
int i;
unsigned char temp[8]; if( length % 8 )
return( ERR_DES_INVALID_INPUT_LENGTH ); if( mode == DES_ENCRYPT )
{
while( length > 0 )
{
for( i = 0; i < 8; i++ )
output[i] = (unsigned char)( input[i] ^ iv[i] ); des_crypt_ecb( ctx, output, output );
memcpy( iv, output, 8 ); input += 8;
output += 8;
length -= 8;
}
}
else /* DES_DECRYPT */
{
while( length > 0 )
{
memcpy( temp, input, 8 );
des_crypt_ecb( ctx, input, output ); for( i = 0; i < 8; i++ )
output[i] = (unsigned char)( output[i] ^ iv[i] ); memcpy( iv, temp, 8 ); input += 8;
output += 8;
length -= 8;
}
} return( 0 );
} /*
* 3DES-ECB block encryption/decryption
*/ int des3_crypt_ecb( des3_context *ctx,
const unsigned char input[8],
unsigned char output[8] )
{
int i;
uint32_t X, Y, T, *SK; SK = ctx->sk; GET_UINT32_BE( X, input, 0 );
GET_UINT32_BE( Y, input, 4 ); DES_IP( X, Y ); for( i = 0; i < 8; i++ )
{
DES_ROUND( Y, X );
DES_ROUND( X, Y );
} for( i = 0; i < 8; i++ )
{
DES_ROUND( X, Y );
DES_ROUND( Y, X );
} for( i = 0; i < 8; i++ )
{
DES_ROUND( Y, X );
DES_ROUND( X, Y );
} DES_FP( Y, X ); PUT_UINT32_BE( Y, output, 0 );
PUT_UINT32_BE( X, output, 4 ); return( 0 );
} /*
* 3DES-CBC buffer encryption/decryption
*/
int des3_crypt_cbc( des3_context *ctx,
int mode,
size_t length,
unsigned char iv[8],
const unsigned char *input,
unsigned char *output )
{
int i;
unsigned char temp[8]; if( length % 8 )
return( ERR_DES_INVALID_INPUT_LENGTH ); if( mode == DES_ENCRYPT )
{
while( length > 0 )
{
for( i = 0; i < 8; i++ )
output[i] = (unsigned char)( input[i] ^ iv[i] ); des3_crypt_ecb( ctx, output, output );
memcpy( iv, output, 8 ); input += 8;
output += 8;
length -= 8;
}
}
else /* DES_DECRYPT */
{
while( length > 0 )
{
memcpy( temp, input, 8 );
des3_crypt_ecb( ctx, input, output ); for( i = 0; i < 8; i++ )
output[i] = (unsigned char)( output[i] ^ iv[i] ); memcpy( iv, temp, 8 ); input += 8;
output += 8;
length -= 8;
}
} return( 0 );
} #endif /* !DES_ALT */ #endif /* DES_C */ /*
* DES-ECB buffer encryption API
*/
unsigned int des_ecb_encrypt(unsigned char *pout,
unsigned char *pdata,
unsigned int nlen,
unsigned char *pkey)
{
unsigned char *tmp;
unsigned int len,i;
unsigned char ch = '\0';
des_context ctx; des_setkey_enc( &ctx, pkey ); len = (nlen / 8 + (nlen % 8 ? 1: 0)) * 8; //ch = 8 - nlen % 8;
for(i = 0;i < nlen;i += 8)
{
des_crypt_ecb( &ctx, (pdata + i), (pout + i) );
}
if(len > nlen)
{
tmp = (unsigned char *)malloc(len);
i -= 8;
memcpy(tmp,pdata + i,nlen - i);
memset(tmp + nlen % 8, ch, (8 - nlen % 8) % 8);
des_crypt_ecb( &ctx, tmp, (pout + i));
free(tmp);
} des_free( &ctx );
return len; }
/*
* DES-ECB buffer decryption API
*/
unsigned int des_ecb_decrypt(unsigned char *pout,
unsigned char *pdata,
unsigned int nlen,
unsigned char *pkey)
{ unsigned int i;
des_context ctx; if(nlen % 8)
return 1; des_setkey_dec( &ctx, pkey ); for(i = 0;i < nlen;i += 8)
{
des_crypt_ecb(&ctx, (pdata + i), (pout + i));
}
des_free( &ctx );
return 0; } /*
* DES-CBC buffer encryption API
*/
unsigned int des_cbc_encrypt(unsigned char *pout,
unsigned char *pdata,
unsigned int nlen,
unsigned char *pkey,
unsigned char *piv)
{
des_context ctx;
unsigned char iv[8] = {0};
unsigned char *pivb; if(piv == NULL)
pivb = iv;
else
pivb = piv; des_setkey_enc( &ctx, pkey ); des_crypt_cbc( &ctx, 1, nlen, pivb, pdata, (pout)); des_free( &ctx ); return nlen; }
/*
* DES-CBC buffer decryption API
*/
unsigned int des_cbc_decrypt(unsigned char *pout,
unsigned char *pdata,
unsigned int nlen,
unsigned char *pkey,
unsigned char *piv)
{ des_context ctx;
unsigned char iv[8] = {0};
unsigned char *pivb; if(piv == NULL)
pivb = iv;
else
pivb = piv; des_setkey_dec( &ctx, pkey ); des_crypt_cbc( &ctx, 0, nlen, pivb, pdata, (pout)); des_free( &ctx ); return 0; }
/*
* 3DES-ECB buffer encryption API
*/
unsigned int des3_ecb_encrypt(unsigned char *pout,
unsigned char *pdata,
unsigned int nlen,
unsigned char *pkey,
unsigned int klen)
{
unsigned char *tmp;
unsigned int len,i;
unsigned char ch = '\0';
des3_context ctx3; if(klen == DES3_KEY2_SIZE)//16字节
des3_set2key_enc( &ctx3, pkey );//根据长度设置key
else if(klen == DES3_KEY3_SIZE)//24字节
des3_set3key_enc( &ctx3, pkey ); len = (nlen / 8 + (nlen % 8 ? 1: 0)) * 8; //ch = 8 - nlen % 8;//可以设置补齐内容,常用0或0xFF
for(i = 0;i < nlen;i += 8)
{
des3_crypt_ecb( &ctx3, (pdata + i), (pout + i) );
}
if(len > nlen)//不足8字节补齐
{
tmp = (unsigned char *)malloc(len);
i -= 8;
memcpy(tmp,pdata + i,nlen - i);
memset(tmp + nlen % 8, ch, (8 - nlen % 8) % 8);
des3_crypt_ecb( &ctx3, tmp, (pout + i));
free(tmp);
} des3_free( &ctx3 );
return len; }
/*
* 3DES-ECB buffer decryption API
*/
unsigned int des3_ecb_decrypt(unsigned char *pout,
unsigned char *pdata,
unsigned int nlen,
unsigned char *pkey,
unsigned int klen)
{ unsigned int i;
des3_context ctx3; if(nlen % 8)
return 1; if(klen == DES3_KEY2_SIZE)
des3_set2key_dec( &ctx3, pkey );
else if(klen == DES3_KEY3_SIZE)
des3_set3key_dec( &ctx3, pkey ); for(i = 0;i < nlen;i += 8)
{
des3_crypt_ecb(&ctx3, (pdata + i), (pout + i));
}
des3_free( &ctx3 );
return 0; }
/*
* 3DES-CBC buffer encryption API
*/
unsigned int des3_cbc_encrypt(unsigned char *pout,
unsigned char *pdata,
unsigned int nlen,
unsigned char *pkey,
unsigned int klen,
unsigned char *piv)
{
des3_context ctx;
unsigned char iv[8] = {0};
unsigned char *pivb;
unsigned int len; if(piv == NULL)
pivb = iv;
else
pivb = piv; if(klen == DES3_KEY2_SIZE)
des3_set2key_enc( &ctx, pkey );
else if(klen == DES3_KEY3_SIZE)
des3_set3key_enc( &ctx, pkey ); if(nlen % 8)
{
len = nlen + 8 - nlen % 8;
tmp = (unsigned char *)calloc(1, len);
memcpy(tmp, pdata, nlen);
des3_crypt_cbc( &ctx, 1, len, pivb, tmp, (pout));
free(tmp);
}
else
{
des3_crypt_cbc( &ctx, 1, nlen, pivb, pdata, (pout));
} des3_free( &ctx ); return nlen; }
/*
* 3DES-CBC buffer decryption API
*/
unsigned int des3_cbc_decrypt(unsigned char *pout,
unsigned char *pdata,
unsigned int nlen,
unsigned char *pkey,
unsigned int klen,
unsigned char *piv)
{ des3_context ctx;
unsigned char iv[8] = {0};
unsigned char *pivb; if(nlen % 8)
return 1; if(piv == NULL)
pivb = iv;
else
pivb = piv; if(klen == DES3_KEY2_SIZE)
des3_set2key_dec( &ctx, pkey );
else if(klen == DES3_KEY3_SIZE)
des3_set3key_dec( &ctx, pkey ); des3_crypt_cbc( &ctx, 0, nlen, pivb, pdata, (pout)); des3_free( &ctx ); return 0; }

这些函数接口可以直接调用,很方便,代码内容也比较清晰,结合DES的算法原理很容易理解

//main函数测试
int des_test_self()
{
unsigned char buff[1024] = {0};
unsigned char data[1024] = {0x3F,0x12,0xE7,0xC0,0x2D,0x66,0x5A,0xB0,0xC4,0x2E,0x58,0xF1};
int ret,len,i; // len = MyStrToHex("3F12E7C02D665AB0C42E58F1", data);//不满8字节
len = strlen((char*)data);
for(i = 0;i < len;i++)
{
printf("%02X",data[i]);
}
printf("\r\n"); unsigned char key[16] = {0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99,0x00,0xAA,0xBB,0xCC,0xDD,0xEE,0xFF};
//DES ECB 加密
printf("DES ECB ENC::\r\n");
ret = des_ecb_encrypt(buff,data,len,key);
for(i = 0;i < ret;i++)
{
printf("%02X",buff[i]);
}
printf("\r\n");
//DES ECB 解密
printf("DES ECB DEC::\r\n");
memset(data,0,sizeof(data));
des_ecb_decrypt(data,buff,ret,key);
for(i = 0;i < ret;i++)
{
printf("%02X",data[i]);
}
printf("\r\n"); //DES CBC 加密
printf("DES CBC ENC::\r\n");
memset(buff,0,sizeof(buff));
des_cbc_encrypt(buff,data,ret,key,NULL);
for(i = 0;i < ret;i++)
{
printf("%02X",buff[i]);
}
printf("\r\n"); //DES CBC 解密
printf("DES CBC DEC::\r\n");
memset(data,0,sizeof(data));
des_cbc_decrypt(data,buff,ret,key,NULL);
for(i = 0;i < ret;i++)
{
printf("%02X",data[i]);
}
printf("\r\n");
printf("\r\n"); //3DES ECB 加密
printf("3DES ECB ENC::\r\n");
ret = des3_ecb_encrypt(buff,data,len,key,16);
for(i = 0;i < ret;i++)
{
printf("%02X",buff[i]);
}
printf("\r\n");
//3DES ECB 解密
printf("3DES ECB DEC::\r\n");
memset(data,0,sizeof(data));
des3_ecb_decrypt(data,buff,ret,key,16);
for(i = 0;i < ret;i++)
{
printf("%02X",data[i]);
}
printf("\r\n"); //3DES CBC 加密
printf("3DES CBC ENC::\r\n");
memset(buff,0,sizeof(buff));
des3_cbc_encrypt(buff,data,ret,key,16,NULL);
for(i = 0;i < ret;i++)
{
printf("%02X",buff[i]);
}
printf("\r\n"); //3DES CBC 解密
printf("3DES CBC DEC::\r\n");
memset(data,0,sizeof(data));
des3_cbc_decrypt(data,buff,ret,key,16,NULL);
for(i = 0;i < ret;i++)
{
printf("%02X",data[i]);
}
printf("\r\n"); return 0;
}

具体验证使用这个工具,内含DES和3DES的CBC算法的计算,和后边的博客中提到的其他算法的工具合集
加密解密算法工具集

---------------------
作者:leumber
来源:CSDN
原文:https://blog.csdn.net/leumber/article/details/78043675?utm_source=copy
版权声明:本文为博主原创文章,转载请附上博文链接!

DES和3DES加密算法C语言实现【转】的更多相关文章

  1. C语言单片和C#语言服务器端DES及3DES加密的实现

    原文:C语言单片和C#语言服务器端DES及3DES加密的实现 公司最近在做单片机和C#语言的通信.用的是Socket通信.传输的数据是明文,后来 在会上讨论准备用DES加密(对称加密)来做. 双方约定 ...

  2. [转] 对称加密算法DES、3DES

    转自:http://www.blogjava.net/amigoxie/archive/2014/07/06/415503.html 1.对称加密算法 1.1 定义 对称加密算法是应用较早的加密算法, ...

  3. 常用加密算法的Java实现总结(二) ——对称加密算法DES、3DES和AES

    1.对称加密算法 1.1 定义 对称加密算法是应用较早的加密算法,技术成熟.在对称加密算法中,数据发信方将明文(原始数据)和加密密钥(mi yue)一起经过特殊加密算法处理后,使其变成复杂的加密密文发 ...

  4. Java Base64、HMAC、SHA1、MD5、AES DES 3DES加密算法

    ●  BASE64 严格地说,属于编码格式,而非加密算法    ●  MD5(Message Digest algorithm 5,信息摘要算法)    ●  SHA(Secure Hash Algo ...

  5. DES、3DES、AES、PBE对称加密算法实现及应用

    1.对称加密算法概述 对称加密算法是应用较早的加密算法,技术成熟.在对称加密算法中,数据发信方将明文和加密密钥一起经过特殊加密算法处理后,使其变成复杂的加密密文发送出去.收信方收到密文后,若想解读原文 ...

  6. 对称加密算法DES、3DES和AES 原理总结(转载)

    1.对称加密算法 1.1 定义 对称加密算法是应用较早的加密算法,技术成熟.在对称加密算法中,数据发信方将明文(原始数据)和加密密钥(mi yue)一起经过特殊加密算法处理后,使其变成复杂的加密密文发 ...

  7. 对称密码-DES和3DES

    最近在看信息安全的知识,就总结了一下自己所学到知识. 先说一下什么是对称密码算法,什么是对称密码算法呢?对称密码算法是指有了加密密钥就可以推算出解密密钥,有了解密密钥就可以推算出加密密钥的的算法. 那 ...

  8. DES,3DES,AES这三种对称密钥的区别与联系

    DES:Data Encryption Standard(数据加密标准,又美国国密局,选中的IBM的方案,密钥长度为56,标准提出是要使用64位长的密钥,但是实际中DES算法只用了64位中的56位密钥 ...

  9. 3DES加密算法32个字节

    简介 最近开发的一个项目,使用到了3DES加密算法,加密socket服务端和客户端通信的报文,因为加密秘钥是32个字节,结果折腾了一番,现在记录下来分享! 1.Des3EncryptUtils.jav ...

随机推荐

  1. spring XML配置参数替代properties文件

    xml中配置BEAN与参数 <bean id="beanXXX" class="com.benXXXX" init-method="initia ...

  2. 网络编程基础【day10】:多线程效果演示(二)

    本节内容 1.引子 2.并发多线程效果演示 一.引子 我们说单核的cpu只能同时执行一个任务,但是给我们的一个幻觉是可以执行多个,因为cpu太快了.它是怎么实现的呢?就是上下文切换,它不是轮询着切换的 ...

  3. python 字符串 切片

    ####################概念######################''' int 整数 str 字符串 一般不存放大量的数据 bool 布尔值,用来判断. True,False ...

  4. C#设计模式(9)——代理模式

    1.代理模式介绍 在软件开发中有时会遇到不能直接使用对象的问题,如我们要使用的对象在进程外,甚至在远程的机器上,但是我们要使用这个对象的功能怎么办呢?代理模式就可以用来解决这个问题.举一个生活中的例子 ...

  5. golang json序列化

    结构体序列化 func main() { var j = js{ Name: "zhangsan", Age: 16, Sal: 1500.3, Intro: "aiha ...

  6. vue-router中query与params区别

    query和params两者都是在Vue路由中传参. 用法: query用path来引入,params只能用name来传递,不能使用path 展示效果:query更像ajax中get请求(会在地址栏显 ...

  7. SQLite 数据库介绍和基本用法

    Ø  简介 SQLite 是一款轻量级的关系型数据库,同时也是一种嵌入式数据库,与 Oracle.MySQL.SQL Server 等数据库不同,它可以内嵌在程序中,是程序中的一个组成部分.所以,经常 ...

  8. idea中配置Springboot热部署

    1 pom.xml文件 注:热部署功能spring-boot-1.3开始有的 <!--添加依赖--> <dependency> <groupId>org.sprin ...

  9. [译]C#7 Pattern Matching

    原文 public struct Square { public double Side { get; } public Square(double side) { Side = side; } } ...

  10. IDAPython脚本之收集函数的调用信息

    转载:All Right 当我们要寻找软件漏洞 bug 的时候,或者做恶意代码分析的时候,首先会找一些常用的而且容易被错误使用的函数.但是有时候程序代码太多找的比较辛苦,并且费时间.所以我们可以写一个 ...