CF1102F Elongated Matrix
题目地址:CF1102F Elongated Matrix
没想到Div.3里还有这么好的题
其实就是求Hamilton路径
预处理 \(d\) 数组:
\(d1_{i,j}\) 表示第 \(i,j\) 行相邻产生的最小值
\(d2_{i,j}\) 表示第 \(i,j\) 行分别为最后一行和第一行时产生的最小值
将每一行当成一个点,任意两点 \(i,j\) 间连一条边权为 \(d1_{i,j}\) 的边
在图中求一条经过边权中最小值最小的Hamilton路径
设 \(f_{i,j}=min(s_{i,j},d2_{j,i})\)
所有 \(f\) 的最小值即为 \(ans\)
求Hamilton路径用状压dp
总时间复杂度为 \(O(n^2m+2^nn^3)\)
代码:
#include <bits/stdc++.h>
using namespace std;
const int N = 16, M = 10000, INF = 0x3f3f3f3f;
int n, m, a[N][M], d1[N][N], d2[N][N], f[N][N];
int s[1<<N][N], ans;
void Hamilton(int x) {
memset(s, 0, sizeof(s));
s[1<<x][x] = INF;
for (int i = 1; i < (1 << n); i++)
for (int j = 0; j < n; j++)
if ((i >> j) & 1)
for (int k = 0; k < n; k++)
if (((i ^ (1 << j)) >> k) & 1)
s[i][j] = max(s[i][j], min(s[i^(1<<j)][k], d1[k][j]));
}
int main() {
cin >> n >> m;
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
scanf("%d", &a[i][j]);
memset(d1, 0x3f, sizeof(d1));
memset(d2, 0x3f, sizeof(d2));
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++) {
for (int k = 0; k < m; k++)
d1[i][j] = min(d1[i][j], abs(a[i][k] - a[j][k]));
for (int k = 1; k < m; k++)
d2[i][j] = min(d2[i][j], abs(a[i][k-1] - a[j][k]));
}
for (int i = 0; i < n; i++) {
Hamilton(i);
for (int j = 0; j < n; j++)
ans = max(ans, min(s[(1<<n)-1][j], d2[j][i]));
}
cout << ans << endl;
return 0;
}
CF1102F Elongated Matrix的更多相关文章
- cf1102F. Elongated Matrix(状压dp)
题意 题目链接 Sol \(n \leqslant 16\)可以想到状压 我们可以预处理出任意两行之间每列的最小值以及相邻两列的最小值 然后枚举一个起点,\(f[sta][i]\)表示走过了\(sta ...
- Codeforces 1102F Elongated Matrix 状压dp
Elongated Matrix 预处理一下两两之间的最小值, 然后直接dp. #include<bits/stdc++.h> #define LL long long #define f ...
- Codeforces Round #531 (Div. 3) F. Elongated Matrix(状压DP)
F. Elongated Matrix 题目链接:https://codeforces.com/contest/1102/problem/F 题意: 给出一个n*m的矩阵,现在可以随意交换任意的两行, ...
- Codeforces1102F Elongated Matrix 【状压DP】
题目分析: 这题瞎搞一个哈密尔顿路,对于起点不同的分开跑就可以过了. $O(n^3*2^n)$ #include<bits/stdc++.h> using namespace std; ; ...
- angular2系列教程(十一)路由嵌套、路由生命周期、matrix URL notation
今天我们要讲的是ng2的路由的第二部分,包括路由嵌套.路由生命周期等知识点. 例子 例子仍然是上节课的例子:
- Pramp mock interview (4th practice): Matrix Spiral Print
March 16, 2016 Problem statement:Given a 2D array (matrix) named M, print all items of M in a spiral ...
- Atitit Data Matrix dm码的原理与特点
Atitit Data Matrix dm码的原理与特点 Datamatrix原名Datacode,由美国国际资料公司(International Data Matrix, 简称ID Matrix)于 ...
- Android笔记——Matrix
转自:http://www.cnblogs.com/qiengo/archive/2012/06/30/2570874.html#translate Matrix的数学原理 在Android中,如果你 ...
- 通过Matrix进行二维图形仿射变换
Affine Transformation是一种二维坐标到二维坐标之间的线性变换,保持二维图形的"平直性"和"平行性".仿射变换可以通过一系列的原子变换的复合来 ...
随机推荐
- mac设计师系列 Adobe “全家桶” 15款设计软件 值得收藏!
文章素材来源:风云社区.简书 文章收录于:风云社区 www.scoee.com,提供1700多款mac软件下载 Adobe Creative Cloud 全线产品均可开放下载(简称Adobe CC 全 ...
- gometalinter代码质量检查分析工具(golang)
GitHub地址:https://github.com/alecthomas/gometalinter gometalinter安装和使用 1.安装 go get github.com/alectho ...
- 2017-12-15python全栈9期第二天第一节之昨日内容回顾
- 图论分支-Tarjan初步-割点和割边
所谓割点(顶)割边,我们引进一个概念 割点:删掉它之后(删掉所有跟它相连的边),图必然会分裂成两个或两个以上的子图. 割边(桥):删掉一条边后,图必然会分裂成两个或两个以上的子图,又称桥. 这样大家就 ...
- 关于Django启动创建测试库的问题
最近项目迁移到别的机器上进行开发,启动Django的时候,有如下提示: Creating test database for alias 'default' 其实这个可能是在Django启动按钮的设置 ...
- Spring Boot笔记三:配置文件
配置文件这里需要讲的东西很多,所以我写在了这里,但是这个是和上篇文章衔接的,所以看这篇文章,先看上篇文章笔记二 一.单独的配置文件 配置文件里面不能都写我们的类的配置吧,这样那么多类太杂了,所以我们写 ...
- C#中 Reference Equals, == , Equals的区别
原文地址:http://blog.csdn.net/wuchen_net/archive/2010/03/23/5409327.aspx ReferenceEquals, == , Equals Eq ...
- linux kill 命令【待完善】【转】
kill 命令用来处理进程, 在linux中即可使用kill -9 pid 杀死进程 , 也可使用kill -KILL pid 等价的命令来执行. HUP 1 终端断线 INT 2 中断(同 Ctrl ...
- 【leetcode-75】 颜色分类
(1过,解法不好,看參考荷兰国旗问题解法) 给定一个包含红色.白色和蓝色,一共 n 个元素的数组,原地对它们进行排序,使得相同颜色的元素相邻,并按照红色.白色.蓝色顺序排列. 此题中,我们使用整数 0 ...
- protobuf使用简介
官网:https://github.com/google/protobuf 环境:windows,java 1. protobuf概述protobuf是Google开发一种数据描述格式,能够将结构化数 ...