分布式事务之深入理解什么是2PC、3PC及TCC协议?
导读
在上一篇文章《【分布式事务】基于RocketMQ搭建生产级消息集群?》中给大家介绍了基于RocketMQ如何搭建生产级消息集群。因为本系列文章最终的目的是介绍基于RocketMQ的事物消息来解决分布式系统中的数据一致性问题,所以先给大家率先介绍了RocketMQ消息集群的搭建。
原本是想着在这篇文章中直接介绍RocketMQ的事务消息特性,但是在梳理的过程中作者发现对于分布式事务的概念,可能还会有很多同学不理解或者理解得不是很深刻的地方,而跳过这些基本概念直接去学习上层的实践可能并不是一件很好的事情,因此在这篇文章中,作者打算重点给大家先介绍下分布式事务相关的基本概念,诸如分布式事务、2PC、3PC、TCC之类的基本问题,之后再单独去介绍RocketMQ事务消息相关的实践。
数据库事务的概念
在讲述分布式事务的概念之前,我们先来回顾下事务相关的一些概念。
事务的基本概念:
就是一个程序执行单元,里面的操作要么全部执行成功,要么全部执行失败,不允许只成功一半另外一半执行失败的事情发生。例如一段事务代码做了两次数据库更新操作,那么这两次数据库操作要么全部执行成功,要么全部回滚。
事务的基本特性:
我们知道事务有4个非常重要的特性,即我们常说的(ACID)。
Atomicity(原子性):是说事务是一个不可分割的整体,所有操作要么全做,要么全不做;只要事务中有一个操作出错,回滚到事务开始前的状态的话,那么之前已经执行的所有操作都是无效的,都应该回滚到开始前的状态。
Consistency(一致性):是说事务执行前后,数据从一个状态到另一个状态必须是一致的,比如A向B转账( A、B的总金额就是一个一致性状态),不可能出现A扣了钱,B却没收到的情况发生。
Isolation(隔离性): 多个并发事务之间相互隔离,不能互相干扰。关于事务的隔离性,可能不是特别好理解,这里的并发事务是指两个事务操作了同一份数据的情况;而对于并发事务操作同一份数据的隔离性问题,则是要求不能出现脏读、幻读的情况,即事务A不能读取事务B还没有提交的数据,或者在事务A读取数据进行更新操作时,不允许事务B率先更新掉这条数据。而为了解决这个问题,常用的手段就是加锁了,对于数据库来说就是通过数据库的相关锁机制来保证。
Durablity(持久性):事务完成后,对数据库的更改是永久保存的,不能回滚。
关于数据库事务的基本概念大家可以去网上搜一下,这里只是给大家回顾下事务的基本概念及特性,诸如事务并发问题、事务隔离级别等大家如有遗忘可以去回顾下(tips:面试经常会问到的问题哦)。
什么是分布式事务
以上内容我们回顾了下事务的基本概念,那么分布式事务又是个什么概念呢?它与数据库事务之间又有什么区别呢?
其实分布式事务从实质上看与数据库事务的概念是一致的,既然是事务也就需要满足事务的基本特性(ACID),只是分布式事务相对于本地事务而言其表现形式有很大的不同。举个例子,在一个JVM进程中如果需要同时操作数据库的多条记录,而这些操作需要在一个事务中,那么我们可以通过数据库提供的事务机制(一般是数据库锁)来实现。
而随着这个JVM进程(应用)被拆分成了微服务架构,原本一个本地逻辑执行单元被拆分到了多个独立的微服务中,这些微服务又分别操作不同的数据库和表,服务之间通过网络调用。
举个例子:服务A收到一笔购物下单请求后,需要调用服务B去支付,支付成功则处理购物订单为待发货状态,否则就需要将购物订单处理为失败状态。(如图所示)
在上面这个例子中会不会出现服务B支付成功了,但是由于网络调用的问题没有通知到服务A,导致用户付了钱,但是购物订单无法显示支付成功的状态呢?
答案是这种情况是普遍存在的,因为服务B在处理成功后需要向服务A发送网络请求,而这个过程是极有可能失败的。那么如何确保“服务A->服务B”这个过程能够组成一个事务,要么全部成功、要么全部失败呢?而这就是典型的需要通过分布式事务解决的问题。
分布式事务是为了解决微服务架构(形式都是分布式系统)中不同节点之间的数据一致性问题。这个一致性问题本质上解决的也是传统事务需要解决的问题,即一个请求在多个微服务调用链中,所有服务的数据处理要么全部成功,要么全部回滚。当然分布式事务问题的形式可能与传统事务会有比较大的差异,但是问题本质是一致的,都是要求解决数据的一致性问题。
而分布式事务的实现方式有很多种,最具有代表性的是由Oracle Tuxedo系统提出的XA分布式事务协议。XA协议包括两阶段提交(2PC)和三阶段提交(3PC)两种实现,接下来我们分别来介绍下这两种实现方式的原理。
两阶段提交(2PC)
两阶段提交又称2PC(two-phase commit protocol),2pc是一个非常经典的强一致、中心化的原子提交协议。这里所说的中心化是指协议中有两类节点:一个是中心化协调者节点(coordinator)和N个参与者节点(partcipant)。
下面我们就以一个尽量贴近实际业务场景的操作来举例:"假设在一个分布式架构的系统中事务的发起者通过分布式事务协调者(如RocketMQ,在早期RocketMQ版本不提供事务消息特性时,有些公司会自己研发一个基于MQ的可靠消息服务来实现一定的分布式事务的特性)分别向应用服务A、应用服务B发起处理请求,二者在处理的过程中会分别操作自身服务的数据库,现在要求应用服务A、应用服务B的数据处理操作要在一个事务里"?
在上面这个例子中如果采用两阶段提交来实现分布式事务,那么其运行原理应该是个什么样的呢?(如
分布式事务之深入理解什么是2PC、3PC及TCC协议?的更多相关文章
- [转帖]分布式事务之解决方案(XA和2PC)
分布式事务之解决方案(XA和2PC) https://zhuanlan.zhihu.com/p/93459200 3. 分布式事务解决方案之2PC(两阶段提交) 针对不同的分布式场景业界常见的解决方案 ...
- 【转帖】分布式事务之解决方案(XA和2PC)
分布式事务之解决方案(XA和2PC) https://zhuanlan.zhihu.com/p/93459200 博彦信息技术有限公司 java工程师 3. 分布式事务解决方案之2PC(两阶段提交 ...
- 分布式事务之解决方案(XA和2PC)
3. 分布式事务解决方案之2PC(两阶段提交) 针对不同的分布式场景业界常见的解决方案有2PC.TCC.可靠消息最终一致性.最大努力通知这几种. 3.1. 什么是2PC 2PC即两阶段提交协议,是将整 ...
- 分布式事务(1)---2PC和3PC理论
分布式事务(1)---2PC和3PC理论 分布式事物基本理论:基本遵循CPA理论,采用柔性事物特征,软状态或者最终一致性特点保证分布式事物一致性问题. 分布式事物常见解决方案: 2PC两段提交协议 3 ...
- 分布式事务(2)---TCC理论
分布式事务(2)---TCC理论 上篇讲过有关2PC和3PC理论知识,博客:分布式事务(1)---2PC和3PC理论 我的理解:2PC.3PC还有TCC都蛮相似的.3PC大致是把2PC的第一阶段拆分成 ...
- 分布式事务一2PC
分布式事务解决方案之2PC(两阶段提交) 前面已经学习了分布式事务的基础理论,以理论为基础,针对不同的分布式场景业界常见的解决方案有2PC.TCC.可靠消息最终一致性.最大努力通知这几种. 3.1.什 ...
- 消息服务框架(MSF)应用实例之分布式事务三阶段提交协议的实现
一,分布式事务简介 在当前互联网,大数据和人工智能的热潮中,传统企业也受到这一潮流的冲击,纷纷响应国家“互联网+”的战略号召,企业开始将越来越多的应用从公司内网迁移到云端和移动端,或者将之前孤立的IT ...
- 即时消息服务框架(iMSF)应用实例之分布式事务三阶段提交协议的实现
一,分布式事务简介 在当前互联网,大数据和人工智能的热潮中,传统企业也受到这一潮流的冲击,纷纷响应国家“互联网+”的战略号召,企业开始将越来越多的应用从公司内网迁移到云端和移动端,或者将之前孤立的IT ...
- 分布式事务之:TCC (Try-Confirm-Cancel) 模式
在当前如火如荼的互联网浪潮下,如何应对海量数据.高并发成为大家面临的普遍难题.广大IT公司从以往的集中式网站架构,纷纷转向分布式的网站架构,随之而来的就是进行数据库拆分和应用拆分,如何在跨数据库.跨应 ...
随机推荐
- Eclipse 中 Maven 项目默认JDK版本为1.5 的解决方法
在 Eclipse 中 Maven project 的默认 JDK 版本是 1.5, 如果不在 settings.xml 或者 pom.xml 中显示的指出 JDK 版本,每次 右键项目--> ...
- python数据结构(二)------元组
元组是不可变序列,因此,元组的操作非常简单,本文就简单介绍一下,并解释下元组存在的意义: 2.2.1 元组的创建 2.2.2 tuple函数 2.2.3 基本元组操作 2.2.4 元组存在的意义 2. ...
- spring multipart源码分析:
1.MultipartResolver MultipartResolver接口提供了spring mvc的上传视图,MultipartResolver实例在请求转交给handlermapping之前. ...
- SHELL脚本学习-练习写一个脚本3
#通过ping命令测试192.168.1段的所有主机是否在线,如果在线就显示is up并显示蓝色,如果不在线就显示is down. #!/bin/bash #Program Description: ...
- MVC Razor视图下ViewData传递html内容被转义
页面输出: html源码: <div style="width: 90%; height: auto;"> <p>付凯航 阿豆 ADOU</p> ...
- 2019.03.11 bzoj4813: [Cqoi2017]小Q的棋盘(贪心)
传送门 考虑最后所有走过的点构成的树,显然除了最长链走一遍以外每条轻链都走两遍. 于是求一波最长链搞一搞就完了. 注意几个小细节特判qwq 代码: #include<bits/stdc++.h& ...
- Web缓存和静态化
Web缓存和静态化 目录 Web缓存基础... 1 什么是Web缓存... 1 Web缓存的类型... 1 为何要使用Web缓存... 1 重验证... 1 更新... 2 浏览器缓存... 2 工作 ...
- Python中使用cx_Oracle调用Oracle存储过程
import cx_Oracle as cx import datetime def execute_sql(): # 声明变量 date_time = datetime.datetime.now() ...
- 公用表表达式 (CTE)、递归、所有子节点、sqlserver
指定临时命名的结果集,这些结果集称为公用表表达式 (CTE).公用表表达式可以包括对自身的引用.这种表达式称为递归公用表表达式. 对于递归公用表达式来说,实现原理也是相同的,同样需要在语句中定义两部分 ...
- Python之xml学习笔记
XML处理模块 xml是实现不同语言或程序之间进行数据交换的协议,跟json差不多,但json使用起来更简单,至今很多传统公司如金融行业的很多系统的接口还主要是xml. xml的格式如下,就是通过&l ...