【BZOJ3451】Normal

Description

某天WJMZBMR学习了一个神奇的算法:树的点分治!

这个算法的核心是这样的:

消耗时间=0

Solve(树 a)

消耗时间 += a 的 大小

如果 a 中 只有 1 个点

退出

否则在a中选一个点x,在a中删除点x

那么a变成了几个小一点的树,对每个小树递归调用Solve

我们注意到的这个算法的时间复杂度跟选择的点x是密切相关的。

如果x是树的重心,那么时间复杂度就是O(nlogn)

但是由于WJMZBMR比较傻逼,他决定随机在a中选择一个点作为x!

Sevenkplus告诉他这样做的最坏复杂度是O(n^2)

但是WJMZBMR就是不信>_<。。。

于是Sevenkplus花了几分钟写了一个程序证明了这一点。。。你也试试看吧_

现在给你一颗树,你能告诉WJMZBMR他的傻逼算法需要的期望消耗时间吗?(消耗时间按在Solve里面的那个为标准)

Input

第一行一个整数n,表示树的大小

接下来n-1行每行两个数a,b,表示a和b之间有一条边

注意点是从0开始标号的

Output

一行一个浮点数表示答案

四舍五入到小数点后4位

如果害怕精度跪建议用long double或者extended

Sample Input

3

0 1

1 2

Sample Output

5.6667

题目大意就是给定一棵树,问随机进行点分治(不一定找重心)每个节点期望访问次数之和。

神题啊。

我们考虑计算点对\(P_{x,y}\)表示在\(x\)最为点分重心的时候访问了\(y\)的概率,由期望的线性性得出\(ans=\sum_{x=1}^n\sum_{y=1}^n P_{x,y}\)。

然后我们考虑怎么求这个\(P_{x,y}\)。假设\(x\)到\(y\)最短路上有\(ver_{x,y}\)个点,那么概率就是\(\frac{1}{ver_{x,y}}\)。

为什么呢?我们可以考虑将点分看成一个删点的操作。我们必须保证在删除\(x\)之前\(x\)到\(y\)的路径都是未被删除的。我们假设可以重复删除以删除的点,则:

\[\displaystyle
\begin{align}
P_{x,y}&=\sum_{i=0}^{\infty}(\frac{n-ver_{x,y}}{n})^i\frac{1}{n}\\
&
=\frac{1}{1-\frac{n-ver_{x,y}}{n}}\frac{1}{n}\\
&=\frac{1}{ver_{x,y}}
\end{align}
\]

这个公式的意义就是考虑在删除\(x\)之前删除了多少次其他点。

所以我们要求的就是\(ans=ans=\sum_{x=1}^n\sum_{y=1}^n \frac{1}{ver_{x,y}}\)

因为这个公式是非线性的,所以我们对于每个\(k\)要求出\([ver_{x,y}==k]\)的数量。这个我们就可以考虑点分治了。

#include<bits/stdc++.h>
#define ll long long
#define N 30005 using namespace std;
inline int Get() {int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}while('0'<=ch&&ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}return x*f;} int n;
struct Com {
long double r,v;
Com() {r=v=0;}
Com(double a,double b) {r=a,v=b;}
};
Com operator +(const Com &a,const Com &b) {return Com(a.r+b.r,a.v+b.v);}
Com operator -(const Com &a,const Com &b) {return Com(a.r-b.r,a.v-b.v);}
Com operator *(const Com &a,const Com &b) {return Com(a.r*b.r-a.v*b.v,a.r*b.v+a.v*b.r);}
Com operator /(const Com &a,const long double b) {return Com(a.r/b,a.v/b);}
const double pi=acos(-1);
void FFT(Com *a,int d,int flag) {
int n=1<<d;
static int rev[N<<2];
for(int i=0;i<n;i++) rev[i]=(rev[i>>1]>>1)|((i&1)<<d-1);
for(int i=0;i<n;i++) if(i<rev[i]) swap(a[i],a[rev[i]]);
for(int s=1;s<=d;s++) {
int len=1<<s,mid=len>>1;
Com w(cos(2*flag*pi/len),sin(2*flag*pi/len));
for(int i=0;i<n;i+=len) {
Com t(1,0);
for(int j=0;j<mid;j++,t=t*w) {
Com u=a[i+j],v=a[i+j+mid]*t;
a[i+j]=u+v;
a[i+j+mid]=u-v;
}
}
}
if(flag==-1) for(int i=0;i<n;i++) a[i]=a[i]/n;
} struct road {
int to,nxt;
}s[N<<1];
int h[N],cnt;
void add(int i,int j) {s[++cnt]=(road) {j,h[i]};h[i]=cnt;}
int size[N],mx[N],sum,rt;
int fr[N];
bool vis[N]; void Get_root(int v,int fr) {
mx[v]=size[v]=1;
::fr[v]=fr;
for(int i=h[v];i;i=s[i].nxt) {
int to=s[i].to;
if(to==fr||vis[to]) continue ;
Get_root(to,v);
size[v]+=size[to];
mx[v]=max(mx[v],size[to]);
}
mx[v]=max(mx[v],sum-size[v]);
if(mx[rt]>mx[v]) rt=v;
} int ans[N];
int tem[N];
int mxdep; void statis(int v,int fr,int dep) {
tem[dep]++;
mxdep=max(mxdep,dep);
for(int i=h[v];i;i=s[i].nxt) {
int to=s[i].to;
if(to==fr||vis[to]) continue ;
statis(to,v,dep+1);
}
} Com A[N<<2];
void cal(int flag) {
int d=ceil(log2(mxdep<<1|1));
for(int i=0;i<1<<d;i++) A[i]=Com(tem[i],0);
FFT(A,d,1);
for(int i=0;i<1<<d;i++) A[i]=A[i]*A[i];
FFT(A,d,-1);
for(int i=0;i<1<<d;i++) {
ans[i+1]+=flag*(int(A[i].r+0.5));
}
} void solve(int v) {
vis[v]=1;
if(fr[v]) size[fr[v]]=sum-size[v];
mxdep=0;
for(int i=h[v];i;i=s[i].nxt) {
int to=s[i].to;
if(vis[to]) continue ;
statis(to,v,1);
}
ans[1]++;
for(int i=1;i<=mxdep;i++) ans[i+1]+=tem[i]*2;
cal(1);
for(int i=1;i<=mxdep;i++) tem[i]=0;
for(int i=h[v];i;i=s[i].nxt) {
int to=s[i].to;
if(vis[to]) continue ;
mxdep=0;
statis(to,v,1);
cal(-1);
for(int j=1;j<=mxdep;j++) tem[j]=0;
sum=size[to];
rt=0;
Get_root(to,v);
solve(rt);
}
} int main() {
mx[0]=1e9;
n=Get();
int a,b;
for(int i=1;i<n;i++) {
a=Get()+1,b=Get()+1;
add(a,b),add(b,a);
}
sum=n;
Get_root(1,0);
solve(rt);
long double Ans=0;
for(int i=1;i<=n;i++) {
Ans+=1.0*ans[i]/(1.0*i);
}
cout<<fixed<<setprecision(4)<<Ans;
return 0;
}

【BZOJ3451】Normal的更多相关文章

  1. 【BZOJ3451】Normal (点分治)

    [BZOJ3451]Normal (点分治) 题面 BZOJ 题解 显然考虑每个点的贡献.但是发现似乎怎么算都不好计算其在点分树上的深度. 那么考虑一下这个点在点分树中每一次被计算的情况,显然就是其在 ...

  2. 【BZOJ3451】Tyvj1953 Normal 点分治+FFT+期望

    [BZOJ3451]Tyvj1953 Normal Description 某天WJMZBMR学习了一个神奇的算法:树的点分治!这个算法的核心是这样的:消耗时间=0Solve(树 a) 消耗时间 += ...

  3. 【bzoj3451】Tyvj1953 Normal 期望+树的点分治+FFT

    题目描述 给你一棵 $n$ 个点的树,对这棵树进行随机点分治,每次随机一个点作为分治中心.定义消耗时间为每层分治的子树大小之和,求消耗时间的期望. 输入 第一行一个整数n,表示树的大小接下来n-1行每 ...

  4. 【BZOJ3451】Tyvj1953 Normal - 点分治+FFT

    题目来源:NOI2019模拟测试赛(七) 非原题面,题意有略微区别 题意: 吐槽: 心态崩了. 好不容易场上想出一题正解,写了三个小时结果写了个假的点分治,卡成$O(n^2)$ 我退役吧. 题解: 原 ...

  5. 【原】Coursera—Andrew Ng机器学习—Week 2 习题—Linear Regression with Multiple Variables 多变量线性回归

    Gradient Descent for Multiple Variables [1]多变量线性模型  代价函数 Answer:AB [2]Feature Scaling 特征缩放 Answer:D ...

  6. 【概率论】5-10:二维正态分布(The Bivariate Normal Distributions)

    title: [概率论]5-10:二维正态分布(The Bivariate Normal Distributions) categories: - Mathematic - Probability k ...

  7. 【概率论】5-6:正态分布(The Normal Distributions Part III)

    title: [概率论]5-6:正态分布(The Normal Distributions Part III) categories: - Mathematic - Probability keywo ...

  8. 【概率论】5-6:正态分布(The Normal Distributions Part II)

    title: [概率论]5-6:正态分布(The Normal Distributions Part II) categories: - Mathematic - Probability keywor ...

  9. 【概率论】5-6:正态分布(The Normal Distributions Part I)

    title: [概率论]5-6:正态分布(The Normal Distributions Part I) categories: - Mathematic - Probability keyword ...

随机推荐

  1. c# 对JSON字符串排序(KEY/VALUE)

    public string StortJson(string json) { var dic = JsonConvert.DeserializeObject<SortedDictionary&l ...

  2. Thinkphp table doesn't exist

    系统采用Tp3.2的改造....集群为Mysql双工模式:平时M()主要是操作写,MS操作读...今天在查询 $res =MS("user u")->join("{ ...

  3. 2. 常见的Queue

    package com.gf.conn013; import java.util.ArrayList; import java.util.Iterator; import java.util.List ...

  4. 【Java每日一题】20170220

    20170217问题解析请点击今日问题下方的“[Java每日一题]20170220”查看(问题解析在公众号首发,公众号ID:weknow619) package Feb2017; import jav ...

  5. Mysql中的外键分析(什么是外键,为什么要用外键,添加外键,主外键关联删除)

    有一个东西一直在我脑海中是个很烦的东西,但是这东西不搞清楚会阻碍自己的前进.自己做项目demo永远只能用一张表... 所以今天还是学习了下外键希望能够搞明白一些... 百度上搜索外键的作用" ...

  6. 弹性盒模型flex

    一.flex flex是flexible box的缩写,意为“弹性布局”: 定义弹性布局 display:flex; box{ display:flex; } 二.基本定义 我只简单的说一下容器和项目 ...

  7. Linux上Simplescalar/ARM的安装和运行文档

    本文是基于ARM的simplescalar在ubuntu下的安装说明 1.1 软件下载  *********************文件下载地址:http://yunpan.cn/cw2n7dAyfG ...

  8. 学习之路-前端-笔记-一、HTML笔记

    各种技巧 1.在Webstrom中 同时按ctrl+alt+insert创建新内容 2.输入标签按tab自动补全 按end 或 HOME实现光标移动到当前行的最后或最前 3.按住alt键不放同时按鼠标 ...

  9. Windchill_IBA属性

    IBA属性:也可以称为软属性,创建IBA属性后并不会改变已有对象的数据库表结构,IBA的属性名和属性值由专门的表存放. StringDefinition表:字符串类型的IBA属性定义 :StringV ...

  10. 2.Odoo产品分析 (一) – 一切为零

    查看Odoo产品分析系列--目录 1. 默认数据库 声明在先  本系列文档(Odoo产品分析)整理来自本人对该ERP的理解,并结合文档Working-with-Odoo-10-Second-Editi ...