The component and implementation of a basic gradient descent in python
in my impression, the gradient descent is for finding the independent variable that can get the minimum/maximum value of an objective function. So we need an obj. function: \(\mathcal{L}\)
- an obj. function: \(\mathcal{L}\)
- The gradient of \(\mathcal{L}: 2x+2\)
- \(\Delta x\) , The value of idependent variable needs to be updated: \(x \leftarrow x+\Delta x\)
1. the \(\mathcal{L}\) is a context function: \(f(x)=x^2+2x+1\)
how to find the \(x_0\) that makes the \(f(x)\) has the minimum value, via gradient descent?
Start with an arbitrary \(x\), calculate the value of \(f(x)\) :
import random
def func(x):
return x*x + 2*x +1
def gred(x): # the gradient of f(x)
return 2*x + 2
x = random.uniform(-10.0,10.0) #randomly pick a float in interval of (-10, 10)
# x = 10
print('x starts at:', x)
y0 = func(x) #first cal
delta = 0.5 #the value of delta_x, each iteration
x = x + delta
# === interation ===
for i in range(100):
print('i=',i)
y1 = func(x)
delta = -0.08*gred(x)
print(' delta=',delta)
if y1 > y0:
print(' y1>y0')
# if gred(x) is positive, the x should decrease.
# if gred(x) is negative, the x should increase.
else:
print(' y1<=y0')
# if gred(x) is positive, the x should increase.
# if gred(x) is negative, the x should decrease.
x = x+delta
y0 = y1
print(' x=', x, 'f(x)=', y1)
Let's disscuss how to determin the some_value
in the psudo code above.
if \(y_1-y_0\) has a large positive difference, i.e. \(y1 >> y0\), the x should shift backward heavily. so the some_value
can be a ratio of \((y_1-y_0)\times(-gradient)\) , Let's say, some_value
: \(\lambda = r \times\) gred(x) , here, \(r=0.08\) is the step-size.
The basic gradient descent has many shortcomings which can be found by search the 'shortcoming of gd'.
Another problem of GD algorithm is , What if the \(\mathcal{L}\) does not have explicit expression of its gradient?
Stochastic Gradient Descent(SGD) is another GD algorithm.
The component and implementation of a basic gradient descent in python的更多相关文章
- (转)Introduction to Gradient Descent Algorithm (along with variants) in Machine Learning
Introduction Optimization is always the ultimate goal whether you are dealing with a real life probl ...
- Logistic Regression and Gradient Descent
Logistic Regression and Gradient Descent Logistic regression is an excellent tool to know for classi ...
- (转) An overview of gradient descent optimization algorithms
An overview of gradient descent optimization algorithms Table of contents: Gradient descent variants ...
- 机器学习-随机梯度下降(Stochastic gradient descent)
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...
- An overview of gradient descent optimization algorithms
原文地址:An overview of gradient descent optimization algorithms An overview of gradient descent optimiz ...
- 机器学习数学基础- gradient descent算法(上)
为什么要了解点数学基础 学习大数据分布式计算时多少会涉及到机器学习的算法,所以理解一些机器学习基础,有助于理解大数据分布式计算系统(比如spark)的设计.机器学习中一个常见的就是gradient d ...
- flink 批量梯度下降算法线性回归参数求解(Linear Regression with BGD(batch gradient descent) )
1.线性回归 假设线性函数如下: 假设我们有10个样本x1,y1),(x2,y2).....(x10,y10),求解目标就是根据多个样本求解theta0和theta1的最优值. 什么样的θ最好的呢?最 ...
- 梯度下降(Gradient Descent)小结
在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法.这里就对梯度下降法做一个完整的总结. 1. 梯度 在微 ...
- 机器学习基础——梯度下降法(Gradient Descent)
机器学习基础--梯度下降法(Gradient Descent) 看了coursea的机器学习课,知道了梯度下降法.一开始只是对其做了下简单的了解.随着内容的深入,发现梯度下降法在很多算法中都用的到,除 ...
随机推荐
- Java线程池不错的总结博客
ImportNew线程池总结 Java多线程之Executor.ExecutorService.Executors.Callable.Future与FutureTask 线程池,这一篇或许就够了
- Winform中Picture控件图片的拖拽显示
注解:最近做了一个小工具,在Winform中对Picture控件有一个需求,可以通过鼠标从外部拖拽图片到控件的上,释放鼠标,显示图片! 首先你需要对你的整个Fom窗口的AllowDrop设置Ture ...
- BZOJ 4265 货币系统
今天比赛的时候做到的.题解写得很简单,但是感觉对于我这种蒟蒻还是很有思考的价值的. 题面(由于题面很短,就不概括了):小Q当上了新的宇宙大总统,他现在准备重新设计一套货币系统. 这个货币系统要求一共有 ...
- java虚拟机 之 垃圾回收机制
一.如何判断对象已死 垃圾回收器并不是java独有的,垃圾回收器的作用就是回收对象释放内存空间,那么如何判断哪些对象应该被回收呢? 在Java语言中是采用GC Roots来解决这个问题.如果一个对象和 ...
- Java_02变量、数据类型和运算符
1.变量命名规则 变量必须以字母.下划线 " _ " 或 " $ " ( " ¥ " ) 符号开头. 变量可以包括数字,但不能以数字开头. ...
- 16路PWM输出的pca9685模块
今天要介绍的就是该模块,该模块是16路pwm模块,使用I2C总线可以控制16路舵机(led). 接线OE空着就可以,其他VCC是芯片供电+5,SCL时钟线,SDA信号线,GND地线. 芯片介绍可以看: ...
- webpack-dev-server --inline --progress --config build/webpack.dev.conf.js
vue 项目 npm run dev 运行时报错: npm ERR! xxx@1.0.0 dev: `webpack-dev-server --inline --progress --config b ...
- 恢复Windows 10自带的微软正黑字体
突然发现 在word中 Microsoft JhengHei 字体没有了,一查在C:\windows\fonts\msjh.ttc文件还在. Windows Registry Editor Vers ...
- nginx1.14.0日志打印
nginx日志打印 http属性log_format来设置日志格式 ,参考 https://www.jb51.net/article/52573.htm <nginx日志配置指令详解> ...
- Druid密码加密
pom里引用: <dependency> <groupId>com.alibaba</groupId> <artifactId>druid-spring ...