in my impression, the gradient descent is for finding the independent variable that can get the minimum/maximum value of an objective function. So we need an obj. function: \(\mathcal{L}\)

  • an obj. function: \(\mathcal{L}\)
  • The gradient of \(\mathcal{L}: 2x+2\)
  • \(\Delta x\) , The value of idependent variable needs to be updated: \(x \leftarrow x+\Delta x\)

1. the \(\mathcal{L}\) is a context function: \(f(x)=x^2+2x+1\)

how to find the \(x_0\) that makes the \(f(x)\) has the minimum value, via gradient descent?

Start with an arbitrary \(x\), calculate the value of \(f(x)\) :

import random
def func(x):
return x*x + 2*x +1
def gred(x): # the gradient of f(x)
return 2*x + 2 x = random.uniform(-10.0,10.0) #randomly pick a float in interval of (-10, 10)
# x = 10
print('x starts at:', x) y0 = func(x) #first cal
delta = 0.5 #the value of delta_x, each iteration
x = x + delta # === interation ===
for i in range(100):
print('i=',i)
y1 = func(x)
delta = -0.08*gred(x)
print(' delta=',delta)
if y1 > y0:
print(' y1>y0')
# if gred(x) is positive, the x should decrease.
# if gred(x) is negative, the x should increase.
else:
print(' y1<=y0')
# if gred(x) is positive, the x should increase.
# if gred(x) is negative, the x should decrease.
x = x+delta
y0 = y1
print(' x=', x, 'f(x)=', y1)

Let's disscuss how to determin the some_value in the psudo code above.

if \(y_1-y_0\) has a large positive difference, i.e. \(y1 >> y0\), the x should shift backward heavily. so the some_value can be a ratio of \((y_1-y_0)\times(-gradient)\) , Let's say, some_value: \(\lambda = r \times\) gred(x) , here, \(r=0.08\) is the step-size.

The basic gradient descent has many shortcomings which can be found by search the 'shortcoming of gd'.

Another problem of GD algorithm is , What if the \(\mathcal{L}\) does not have explicit expression of its gradient?

Stochastic Gradient Descent(SGD) is another GD algorithm.

The component and implementation of a basic gradient descent in python的更多相关文章

  1. (转)Introduction to Gradient Descent Algorithm (along with variants) in Machine Learning

    Introduction Optimization is always the ultimate goal whether you are dealing with a real life probl ...

  2. Logistic Regression and Gradient Descent

    Logistic Regression and Gradient Descent Logistic regression is an excellent tool to know for classi ...

  3. (转) An overview of gradient descent optimization algorithms

    An overview of gradient descent optimization algorithms Table of contents: Gradient descent variants ...

  4. 机器学习-随机梯度下降(Stochastic gradient descent)

    sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...

  5. An overview of gradient descent optimization algorithms

    原文地址:An overview of gradient descent optimization algorithms An overview of gradient descent optimiz ...

  6. 机器学习数学基础- gradient descent算法(上)

    为什么要了解点数学基础 学习大数据分布式计算时多少会涉及到机器学习的算法,所以理解一些机器学习基础,有助于理解大数据分布式计算系统(比如spark)的设计.机器学习中一个常见的就是gradient d ...

  7. flink 批量梯度下降算法线性回归参数求解(Linear Regression with BGD(batch gradient descent) )

    1.线性回归 假设线性函数如下: 假设我们有10个样本x1,y1),(x2,y2).....(x10,y10),求解目标就是根据多个样本求解theta0和theta1的最优值. 什么样的θ最好的呢?最 ...

  8. 梯度下降(Gradient Descent)小结

    在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法.这里就对梯度下降法做一个完整的总结. 1. 梯度 在微 ...

  9. 机器学习基础——梯度下降法(Gradient Descent)

    机器学习基础--梯度下降法(Gradient Descent) 看了coursea的机器学习课,知道了梯度下降法.一开始只是对其做了下简单的了解.随着内容的深入,发现梯度下降法在很多算法中都用的到,除 ...

随机推荐

  1. app内嵌vue h5,安卓和ios拦截H5点击事件

    安卓和ios拦截h5点击事件,这个函数事件必须是暴漏在window下的 安卓和ios拦截普通h5函数: <div onclick = "show(),window.android.sh ...

  2. informix 随笔

    1.新建连接create new database connection 2.database Url:  jdbc:informix-sqli://119.84.39.35:29999/gps_pr ...

  3. JDK新特性之可变个数的形参的方法

    可变个数的形参的方法:1.格式:对于方法的形参来说:数据类型...形参名2.可变个数的形参的方法与同名的方法之间可以构成重载3.可变个数的形参在调用时,个数从0开始,到无穷都可以(在调用这个方法时,s ...

  4. day05-数据类型与操作

  5. day01代码

    1. 使用while循环打印1,2,3,4,5,7,8,9 # 使用while循环打印1,2,3,4,5,7,8,9 count = 0 while count < 10: count += 1 ...

  6. 【C#】stream图像转byte的问题

    Image xx = Image.FromStream(linkList[ii].stream); byte[] bytes = new Byte[linkList[ii].stream.Length ...

  7. 第一次使用mybatis

    程序使用mybatis的步骤: 1.配置mybatis 涉及到的配置文件有conf.xml和与实体类对应的映射配置文件 (1) conf.xml:配置数据库信息和需要加载的映射文件 <confi ...

  8. python-实现3级菜单(作业课)

    #任务: #显示3级菜单 #1级菜单#显示 3个城市 => 1北京 2上海 3广州 #2级菜单 #显示 选择1 北京 => B1 B2 B3 #2级菜单 #显示 选择2 上海 => ...

  9. Win10系统下Anaconda下安装多种Python函数库

    建议直接安装Anaconda,这是一个包含Numpy,Pandas,Sklearn等函数库的计算机科学软件包,下面的软件可以在此环境下进行安装下载. 一.计算机视觉 1. OpenCV图像处理 在ht ...

  10. python基础知识10---算法

    一.递归 程序本身自己调用自己称之为递归,类似于俄罗斯套娃,体现在代码中:用户执行最外(N)层函数,最外侧调用N-1层函数,N-1层函数调用N-2层函数... 利用函数编写如下数列: 斐波那契数列指的 ...