HDU 3308 LCIS (经典区间合并)【线段树】
<题目链接>
题目大意:
给你一段序列,对其进行两种操作,一是修改某个序号的点的值;二是查询某个区间的LCIS(最长上升子序列)。
解题分析:
线段树区间合并的典型例题,用求某个区间的LCIS时,需要比较三个值,一是左区间的LCIS,二是右区间的LCIS,三是左右子区间合并的LCIS。最重要的是第三点如何实现,实现第三点需要维护一个最长后缀上升子序列和最长前缀上升子序列,总之,相对于一般的线段树,区间合并需要对Pushup()函数进行一些改动,query()的时候也要记得对三种情况进行讨论。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int siz=;
int a[siz],sum[siz<<],lsum[siz<<],rsum[siz<<]; void pushup(int rt,int l,int r) { //区间合并,更新该节点对应的最长上升子序列和最长前、后缀
lsum[rt]=lsum[rt<<]; //最长前缀
rsum[rt]=rsum[rt<<|]; //最长后缀
sum[rt]=max(sum[rt<<],sum[rt<<|]);
/*-- 先更新该节点需要维护的三个值 --*/ int m=(l+r)>>;
if(a[m]<a[m+]){ //如果左右子区间的LCIS能够合并,那么就进一步更新这三个点 if(lsum[rt<<]==(m-l+)) //如果左子区间的最长前缀==左子区间长度
lsum[rt]+=lsum[rt<<|]; //那么该节点的最长前缀除左子区间的最长前缀以外,还要加上右子区间的最长前缀
if(rsum[rt<<|]==(r-m)) //如果右子区间的最长后缀==右子区间长度
rsum[rt]+=rsum[rt<<]; //那么该节点的最长后缀除右子区间的最长后缀外,还要加上左子区间的最长后缀
/*-- 更新rt节点对应区间的最长前、后缀 --*/ sum[rt]=max(sum[rt],rsum[rt<<]+lsum[rt<<|]);
//更新rt节点对应区间的最长上升子序列
}
}
void build(int l,int r,int rt){
if(l==r){ //注意这里的初始化
sum[rt]=;
lsum[rt]=rsum[rt]=;
return;
}
int m=(l+r)>>;
build(l,m,rt<<);
build(m+,r,rt<<|);
pushup(rt,l,r);
}
void update(int loc,int val,int l,int r,int rt){ //单点更新
if(l==r){
a[l]=val;
return;
}
int m=(l+r)>>;
if(loc<=m)
update(loc,val,l,m,rt<<);
else
update(loc,val,m+,r,rt<<|);
pushup(rt,l,r);
}
int query(int L,int R,int l,int r,int rt){
if(L<=l&&r<=R)
return sum[rt];
int m=(l+r)>>;
int ans=; //注意这里ans初始化为1 /*-- 答案一共三种可能,在左区间或右区间或横跨两个区间 --*/
if(L<=m) //左、右区间的LCIS
ans=max(ans,query(L,R,l,m,rt<<));
if(R>m)
ans=max(ans,query(L,R,m+,r,rt<<|)); if(L<=m&&R>=m&&a[m]<a[m+]) //横跨左右两个子区间的情况
ans=max(ans,min(m-L+,rsum[rt<<])+min(R-m,lsum[rt<<|])); //rsum代表区间最长后缀、lsum为区间最长前缀
return ans;
} int main(){ //lsum为区间左端点开始长度
char c; //rsum为区间右端点开始长度
int t,n,m; //sum为区间最长长度
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
scanf("%d",&a[i]);
build(,n,);
while(m--){
int u,v;
cin>>c>>u>>v;
if(c=='Q'){
u++,v++; //因为题目是从0开始编号
printf("%d\n",query(u,v,,n,));
}
else{
u++;
update(u,v,,n,);
}
}
}
return ;
}
2018-09-11
HDU 3308 LCIS (经典区间合并)【线段树】的更多相关文章
- BZOJ 2243:染色(树链剖分+区间合并线段树)
[SDOI2011]染色Description给定一棵有n个节点的无根树和m个操作,操作有2类:1.将节点a到节点b路径上所有点都染成颜色c:2.询问节点a到节点b路径上的颜色段数量(连续相同颜色被认 ...
- HDU 1540 区间合并线段树
题目大意: 就是给定一堆位置,进行删除还原,最后找到 t 位置上的最大连续位置 #include <cstdio> #include <cstring> #include &l ...
- HDU 3308 LCIS (线段树·单点更新·区间合并)
题意 给你一个数组 有更新值和查询两种操作 对于每次查询 输出相应区间的最长连续递增子序列的长度 基础的线段树区间合并 线段树维护三个值 相应区间的LCIS长度(lcis) 相应区间以左 ...
- HDU 5029 Relief grain(离线+线段树+启发式合并)(2014 ACM/ICPC Asia Regional Guangzhou Online)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5029 Problem Description The soil is cracking up beca ...
- hdu 5700区间交(线段树)
区间交 Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submiss ...
- hdu 5274 Dylans loves tree(LCA + 线段树)
Dylans loves tree Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Othe ...
- 【BZOJ4653】【NOI2016】区间(线段树)
[BZOJ4653][NOI2016]区间(线段树) 题面 BZOJ 题解 \(NOI\)良心送分题?? 既然是最大长度减去最小长度 莫名想到那道反复减边求最小生成树 从而求出最小的比值 所以这题的套 ...
- BZOJ_4653_[Noi2016]区间_线段树+离散化+双指针
BZOJ_4653_[Noi2016]区间_线段树+离散化+双指针 Description 在数轴上有 n个闭区间 [l1,r1],[l2,r2],...,[ln,rn].现在要从中选出 m 个区间, ...
- xdoj-1324 (区间离散化-线段树求区间最值)
思想 : 1 优化:题意是覆盖点,将区间看成 (l,r)转化为( l-1,r) 覆盖区间 2 核心:dp[i] 覆盖从1到i区间的最小花费 dp[a[i].r]=min (dp[k])+a[i]s; ...
随机推荐
- Oauth2.0 QQ&微信&微博实现第三方登陆
一.写在前面 目前对于大多数的App或Web网站都支持有第三方登陆这个功能,用户可使用 QQ/ 微信/ 微博 帐号快速登录你的网站,降低注册门槛,为你的网站带来海量新用户.最近在新项目上刚好用到了,在 ...
- Vuejs的一些总结
http://blog.csdn.net/xllily_11/article/details/52312044 原文链接:http://mrzhang123.github.io/2016/07/14/ ...
- 部署MySQL5.7时的权限问题
本周部署MySQL5.7的时候遇到这样的问题,在初始化的时候,总是失败,并且报错: 2019-01-09T09:47:13.957685Z 0 [ERROR] InnoDB: Operating sy ...
- ajax----发送异步请求的步骤
1)获取(创建)Ajax对象:获取XMLHttpRequest对象2)创建请求:调用xhr的open方法3)在发送请求之前需要设置回调函数:绑定指定xhr的onreadystatechange事件4) ...
- windows客户端走代理上网
前提:在大型网络中,由于众多服务器及安全性考虑,内网服务器是不能上外网的,但是为了满足某些服务的需要,一定会搭建代理服务器的. 以下是windows客户端走代理服务器的操作: 两下确定就可 ...
- PaperNotes Instance-Level Salient Object Segmentation
title: PaperNotes Instance-Level Salient Object Segmentation comments: true date: 2017-12-20 13:53:1 ...
- Tomcat使用https
# 用JDK自带的Keytool生成keystore文件keytool -genkey -alias tomcat -keyalg RSA -keypass Envisi0n -storepass E ...
- shell 写的 jrottenberg/ffmpeg 转码
#!/bin/bash ];then echo "The argument must be 2" exit; else echo "$1 $2" fi VIDE ...
- CentOS6.9安装Kafka
先设置jdk1.8 vi /etc/profile export JAVA_HOME=/usr/local/jdkexport JRE_HOME=/usr/local/jdk/jreexport CL ...
- 关于tornado中session的总结
#!/usr/bin/env python# _*_ coding:utf-8 _*_ import tornado.webimport tornado.ioloop container = {} # ...