补算法导论P564 MODULAR-LINEAR-EQUATION-SOLVER算法(P564)

C Looooops POJ - 2115 拓展gcd 有一个定理待补()的更多相关文章

  1. D - C Looooops POJ - 2115 欧几里德拓展

    题意:就是看看for(; ;)多久停止. 最让我蛋疼的是1L和1LL的区别!让我足足wa了12发! 1L 是long类型的, 1LL为long long类型的! 思路: 这就是欧几里德扩展的标准式子了 ...

  2. R - C Looooops POJ - 2115 (exgcd)

    题目大意:很好理解,一个for循环语句,从a开始到b结束,步长是c,模数是pow(2,k) 问,最少循环多少次,才能到达b,如果永远都到不了b,输出FOREVER 题解:其实就是求一个线性方程,cx= ...

  3. C Looooops POJ - 2115 (exgcd)

    一个编译器之谜:我们被给了一段C++语言风格的循环 for(int i=A;i!=B;i+=C) 内容; 其中所有数都是k位二进制数,即所有数时膜2^k意义下的.我们的目标时球出 内容 被执行了多少次 ...

  4. B - C Looooops POJ - 2115 (扩展欧几里得)

    题目链接:https://cn.vjudge.net/contest/276376#problem/B 题目大意:for( int  i= A ; i != B; i+ = c ),然后给你A,B,C ...

  5. C Looooops POJ - 2115

    数论好题.. 香! 首先我们看到这一题, 题意是 \[a + c * x \equiv b (mod \ \ 2 ^ k) \] 对此式移一下项, 得 \[c * x \equiv b - a (mo ...

  6. Day7 - F - C Looooops POJ - 2115

    A Compiler Mystery: We are given a C-language style for loop of type for (variable = A; variable != ...

  7. 【题解】POJ 2115 C Looooops (Exgcd)

    POJ 2115:http://poj.org/problem?id=2115 思路 设循环T次 则要满足A≡(B+CT)(mod 2k) 可得 A=B+CT+m*2k 移项得C*T+2k*m=B-A ...

  8. POJ 2115 C Looooops(扩展欧几里得应用)

    题目地址:POJ 2115 水题. . 公式非常好推.最直接的公式就是a+n*c==b+m*2^k.然后能够变形为模线性方程的样子,就是 n*c+m*2^k==b-a.即求n*c==(b-a)mod( ...

  9. gcd和拓展gcd算法

    gcd算法是用来求两个数最大公约数的算法,他是依靠辗转相除(中国好像叫辗转相减)法来求两个数的最大公约数,别的地方也有很多介绍不做过多赘述,主要提供代码供自己参考. gcd(int a,int b) ...

随机推荐

  1. Five Dimensional Points CodeForces - 851C (计算几何+暴力)

      C. Five Dimensional Points time limit per test 2 seconds memory limit per test 256 megabytes input ...

  2. 一种简单有效的VBA源代码加密办法,支持64位宿主,适用于大部分VBA代码加密

    原始出处:http://www.cnblogs.com/Charltsing/p/EncryptVBACode.html VBA代码加密是个老生常谈的问题,自从本人的VBA Dumper发布之后,在O ...

  3. iOS-带图片的二维码的生成(QRCode)

    https://blog.csdn.net/feng512275/article/details/82824650 2018年09月23日 20:29:45 筝风放风筝 阅读数:91   版权声明:本 ...

  4. p9半幺群

    如何不理解划红线的地方?第二个划红线地方,请举一个例子 1.0不是幺元 2.f(1)=2, f(2)=1, f(3)=3, g(1)=2, g(2)=3, g(3)=1  fg不等于gf

  5. 【kindle笔记】之 《明朝那些事儿》-2018-7-1

    [kindle笔记]读书记录-总 最近在读这本书.之前在微信读书里断断续续读过,读到深处还想蹦起来做笔记那种.后来种种原因断了,再没续上. 现在又开始啦.最近还在重八兄造反阶段,还很早呢,有时候晚上玩 ...

  6. 【转】Docker部署Tomcat及Web应用

    Docker部署Tomcat及Web应用 - Scofield_No1的博客 - CSDN博客https://blog.csdn.net/qq_32351227/article/details/786 ...

  7. linux命令:拷贝命令家族(cp、scp、rsync)

    Linux命令中:rsync和cp之间的区别 - 小 楼 一 夜 听 春 雨 - 博客园https://www.cnblogs.com/kex1n/p/7008178.html cp,scp,rsyn ...

  8. winform使用相关

    1.回车键触发按钮点击事件——回车登录 设置窗体的AccessButton属性 2.密码框样式设置 设置PasswordChar为想要的密码显示的样式,如*  3.设置窗口居中 设置StartPosi ...

  9. 字符串和ASCII之间的转换

    public class CharToAscii { public static void main(String[] args) { CharToAscii.AscToString(); CharT ...

  10. WebService实例-CRM系统提供WebService实现用户注册功能

    <—start—> 编写crm的webservice接口,实现客户信息保存操作.在CustomerService接口中新增一个服务接口,用于添加客户注册的信息. @Path("/ ...