HNOI2017 抛硬币 (FakeBeng)
除了队长快跑外最难的题吧。
除了需要写\(exLucas\)之外,还教会了我大量的卡常技巧。
首先\(70\)分就是个直接按题意模拟,易得\(ans=\sum_{j=0}^{b} C_{b}^{j}\sum_{i=j+1}^{a}C_{a}^{i}\),把后面的求和用后缀和优化一下,外加\(exLucas\)和大力卡常应该可以拿到这档分。
考虑满分做法,首先对于\(a=b\)的,显然每一种胜利局面取反后一定是一种失败局面,当然还有平局。
我们考虑用总情况减去平局除以二。
如何计算平局,显然有\(sum=\sum_{i=0}^{a}C_{a}^{i}*C_{b}^{i}\),因为\(a=b\),所以这式子等于\(C_{2a}^{a}\),证明很显然。
所以当\(a=b\)时,\(ans=\frac{2^{a+b}-C_{2a}^{a}}{2}\)。
现在考虑\(a>b\)的情况,显然每个失败状态和平局取反后一定是必胜的,但是有些胜利状态取反后还是胜利的。我们考虑计算这一部分。
我们假设小\(A\)抛了\(W_A\)次正面,小\(B\)抛了\(W_B\)次正面,那么在该情况下有\(W_A>W_B\),那么\(a-W_A>b-W_B\),得\(a-b>W_A-W_b>0\),枚举\(W_A-W_B\),有\(\sum_{i=1}^{a-b-1}\sum_{j=0}^{b}C_{b}^{j}C_{a}^{i+j}\),转换一下得\(\sum_{i=1}^{a-b-1}\sum_{j=0}^{b}C_{b}^{b-j}C_{a}^{i+j}\) ,因为\(b-j+i+j=b+i\),所以\(\sum_{i=1}^{a-b-1}C_{a+b}^{b+i}\),然后就可以算了。\(ans=\frac{2^{a+b}+\sum_{i=1}^{a-b-1}C_{a+b}^{b+i}}{2}\) 。然后你就可以算了,还有个卡常,就是这个组合数是对称的,我们可以只算一半。
HNOI2017 抛硬币 (FakeBeng)的更多相关文章
- bzoj 4830: [Hnoi2017]抛硬币 [范德蒙德卷积 扩展lucas]
4830: [Hnoi2017]抛硬币 题意:A投a次硬币,B投b次硬币,a比b正面朝上次数多的方案数,模\(10^k\). \(b \le a \le b+10000 \le 10^{15}, k ...
- 【BZOJ4830】[HNOI2017]抛硬币(组合计数,拓展卢卡斯定理)
[BZOJ4830][HNOI2017]抛硬币(组合计数,拓展卢卡斯定理) 题面 BZOJ 洛谷 题解 暴力是啥? 枚举\(A\)的次数和\(B\)的次数,然后直接组合数算就好了:\(\display ...
- bzoj 4830: [Hnoi2017]抛硬币
Description 小A和小B是一对好朋友,他们经常一起愉快的玩耍.最近小B沉迷于**师手游,天天刷本,根本无心搞学习.但是 已经入坑了几个月,却一次都没有抽到SSR,让他非常怀疑人生.勤勉的小A ...
- [AH/HNOI2017]抛硬币
题目描述 小 A 和小 B 是一对好朋友,他们经常一起愉快的玩耍.最近小 B 沉迷于**师手游,天天刷本,根本无心搞学习.但是已经入坑了几个月,却一次都没有抽到 SSR,让他非常怀疑人生.勤勉的小 A ...
- bzoj4830 hnoi2017 抛硬币
题目描述 小 A 和小 B 是一对好朋友,他们经常一起愉快的玩耍.最近小 B 沉迷于**师手游,天天刷本,根本无心搞学习.但是已经入坑了几个月,却一次都没有抽到 SSR,让他非常怀疑人生.勤勉的小 A ...
- luogu P3726 [AH2017/HNOI2017]抛硬币
传送门 我是真的弱,看题解都写了半天,,, 这题答案应该是\(\sum_{i=1}^{a}\binom{a}{i}\sum_{j=0}^{min(b,i-1)}\binom{b}{j}\) 上面那个式 ...
- 【刷题】BZOJ 4830 [Hnoi2017]抛硬币
Description 小A和小B是一对好朋友,他们经常一起愉快的玩耍.最近小B沉迷于**师手游,天天刷本,根本无心搞学习.但是已经入坑了几个月,却一次都没有抽到SSR,让他非常怀疑人生.勤勉的小A为 ...
- [HNOI2017]抛硬币
Description 小A和小B是一对好朋友,他们经常一起愉快的玩耍.最近小B沉迷于××师手游,天天刷本,根本无心搞学习.但是已经入坑了几个月,却一次都没有抽到SSR,让他非常怀疑人生.勤勉的小A为 ...
- [luogu3726 HNOI2017] 抛硬币 (拓展lucas)
传送门 数学真的太优秀了Orz 数据真的太优秀了Orz 题目描述 小 A 和小 B 是一对好朋友,他们经常一起愉快的玩耍.最近小 B 沉迷于**师手游,天天刷本,根本无心搞学习.但是已经入坑了几个月, ...
随机推荐
- Python_面向对象_单例模式
class A(object): pass a1 = A() a2 = A() print(a1 == a2)print(id(a1))print(id(a2)) 结果: False 23257231 ...
- Apache Tomcat® - Which Version Do I Want?
Apache Tomcat® - Which Version Do I Want?http://tomcat.apache.org/whichversion.html
- Git分支合并:Merge、Rebase的选择
git代码合并:Merge.Rebase的选择 - iTech - 博客园http://www.cnblogs.com/itech/p/5188932.html Git如何将一个分支的修改同步到另一个 ...
- Mysql之常用操作(2)
Windows服务 -- 启动MySQL net start mysql -- 创建Windows服务 sc create mysql binPath= mysqld_bin_path(注意:等号与值 ...
- C#设计模式之7:适配器模式
适配器模式 使用适配器模式的一个重要的点是首先要识别出什么代码(接口)是已经存在的,什么代码(接口)是新的,需要去适配的.适配器的作用是让旧的(现有的)接口能够匹配新的系统(要去适配的). 比如有下面 ...
- hihoCoder1033 交错和 数位DP
题目:交错和 链接:http://hihocoder.com/problemset/problem/1033# 题意:对于一个十进制整数x,令a0.a1.a2.....an是x从高位到低位的数位,定义 ...
- win10远程桌面连接提示身份验证错误,要求的函数不受支持的解决方案
转自https://www.baidu.com/link?url=67JXh4h79mN47mEenuH_ElGkSh9_GdOiY-Xp9Ihw0_mQIZHrPx-HxY3EIm_nTZKPoRZ ...
- CDH 6.0.1 集群搭建 「Before install」
从这一篇文章开始会有三篇文章依次介绍集群搭建 「Before install」 「Process」 「After install」 继上一篇使用 docker 部署单机 CDH 的文章,当我们使用 d ...
- 集合之ArrayList(含JDK1.8源码分析)
一.ArrayList的数据结构 ArrayList底层的数据结构就是数组,数组元素类型为Object类型,即可以存放所有类型数据.我们对ArrayList类的实例的所有的操作(增删改查等),其底层都 ...
- delphi中如何实现DBGrid中的两列数据想减并存入另一列
可参考下面的例子: 数据自动计算的实现:“金额”是由“单价”和“工程量”相乘直接得来的,勿需人工输入. 这可在“数据源构件”的onupdatedata例程添加如下代码实现: procedure T ...