基于TensorFlow的深度学习系列教程 2——常量Constant
前面介绍过了Tensorflow的基本概念,比如如何使用tensorboard查看计算图。本篇则着重介绍和整理下Constant相关的内容。
基于TensorFlow的深度学习系列教程 1——Hello World!
常量的概念
在tensorflow中,数据分为几种类型: 常量Constant、变量Variable、占位符Placeholder。其中:
- 常量:用于存储一些不变的数值,在计算图创建的时候,调用初始化方法时,直接保存在计算图中
- 变量:模型训练的参数,比如全连接里面的W和bias
- 占位符:就是模型每次训练时的样本,当计算图固定时,只需要替换占位符里面的内容,就可以重新计算了。
概念上跟spark的DAG图差不多,不过图的模式更固定一些,不像spark还分为action和transform。
常量的简单使用
下面这个例子就是常量最简单的使用例子了,定义a和b两个常量,输出x。x=a+b。
import tensorflow as tf
a = tf.constant(2)
b = tf.constant(3)
x = tf.add(a, b)
with tf.Session() as sess:
writer = tf.summary.FileWriter('./graphs', sess.graph)
print(sess.run(x))
writer.close()
得到的计算图如下:
选中constant可以发现,它的值直接写在定义里面了。
常量的初始化
1 固定初始化、0或1初始化
最常用的初始化方法,就是直接在声明的时候赋予一个初始值,也可以根于指定的shape进行0和1的填充
import tensorflow as tf
# tf.constant(value, dtype=None, shape=None, name='Const', verify_shape=False)
# 常量的创建
# [2 2]
a = tf.constant([2, 2], name='vector')
# [[0 1] [2 3]]
b = tf.constant([[0, 1], [2, 3]], name='b')
# 也可以直接初始化成0或者1
# [[0 0 0] [0 0 0]]
zero1 = tf.zeros([2, 3], tf.int32)
# [[0 0] [0 0]]
zero2 = tf.zeros_like([[0, 1], [2, 3]])
# [[1 1 1] [1 1 1]]
one1 = tf.ones([2, 3], tf.int32)
# [[1 1] [1 1]]
one2 = tf.ones_like([[0, 1], [2, 3]])
# 基于填充创建
# [[8 8 8] [8 8 8]]
fill1 = tf.fill([2, 3], 8)
# 基于序列创建
# [10. 11. 12. 13.]
lnspace1 = tf.linspace(10., 13., 4, name='linspace')
# [ 3 7 11 15]
range1 = tf.range(3, 18, 4)
# [ 3 8 13]
range2 = tf.range(3, 18, 5)
# [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17]
range3 = tf.range(18)
with tf.Session() as sess:
print(sess.run(a))
print(sess.run(b))
print(sess.run(zero1))
print(sess.run(zero2))
print(sess.run(one1))
print(sess.run(one2))
print(sess.run(fill1))
print(sess.run(lnspace1))
print(sess.run(range1))
print(sess.run(range2))
print(sess.run(range3))
tensorflow在设计时,尽量模仿numpy,因此很多函数都很类似。不过有一些操作tf中还是无法支持的,比如map:
import tensorflow as tf
import numpy as np
"""
0.0
3.3333333333333335
6.666666666666667
10.0
"""
for a in np.linspace(0., 10., 4):
print(a)
"""
TypeError: Tensor objects are not iterable when eager execution is not enabled. To iterate over this tensor use tf.map_fn.
"""
for a in tf.linspace(0., 10., 4):
print(a)
常量的随机初始化
另一种常用的初始化方法就是指定随机方法进行初始化。
import tensorflow as tf
import cv2
# 初始化服从指定正态分布的数值
# [ 2.3021064 0.4199094 -0.03323628 0.47499242 0.36770386 -0.7848035 -0.70948434 -0.35462353 0.75125676 0.50364155]
r1 = tf.random_normal([10], mean=0.0, stddev=1.0, dtype=tf.float32)
# 产生截断的正态分布,如果与均值差值超过两倍,就重新生成
# [ 1.785729 0.5161861 0.3950558 1.5795906 0.25945508 -1.5349426 -0.00732355 0.14366971 -0.7726713 -0.2694001 ]
r2 = tf.truncated_normal([10])
# 产生low和high之间的均匀分布
# [-0.54088783 -2.957581 1.8622065 -2.7436473 0.8000214 2.087247 2.5148878 -0.19671392 0.9098282 1.6573 ]
r3 = tf.random_uniform([10], minval=-3, maxval=3, dtype=tf.float32)
# 随机打乱
# [4 2 1 5 3]
r4 = tf.random_shuffle([1, 2, 3, 4, 5])
# 随机裁剪,一般用在图像上
# [-1.6676509 -2.3372912 -0.39069057 2.044036 -2.0961857 ]
r5 = tf.random_crop(r3, [5])
# 图片例子
img = cv2.imread('tensorboard.jpg')
cv2.imshow('origin', img)
# 多项式
multinomial1 = tf.multinomial([[0.99], [0.2]], 10)
multinomial2 = tf.multinomial([[0, 0.02, 0.99], [0, 0.99, 0.2]], 10)
# r7 = tf.random_gamma([])
with tf.Session() as sess:
print(sess.run(r1))
print(sess.run(r2))
print(sess.run(r3))
print(sess.run(r4))
print(sess.run(r5))
print(sess.run(multinomial1))
print(sess.run(multinomial2))
img_tf = tf.convert_to_tensor(img)
distorted_image = tf.random_crop(img_tf, [300, 300, 3])
img_np = distorted_image.eval()
cv2.imshow('random', img_np)
cv2.waitKey(0)
里面的random_gamma没见过应用的场景,所以也没有细致的研究。
基于TensorFlow的深度学习系列教程 2——常量Constant的更多相关文章
- 基于TensorFlow的深度学习系列教程 1——Hello World!
最近看到一份不错的深度学习资源--Stanford中的CS20SI:<TensorFlow for Deep Learning Research>,正好跟着学习一下TensorFlow的基 ...
- TensorFlow和深度学习入门教程(TensorFlow and deep learning without a PhD)【转】
本文转载自:https://blog.csdn.net/xummgg/article/details/69214366 前言 上月导师在组会上交我们用tensorflow写深度学习和卷积神经网络,并把 ...
- TensorFlow和深度学习新手教程(TensorFlow and deep learning without a PhD)
前言 上月导师在组会上交我们用tensorflow写深度学习和卷积神经网络.并把其PPT的參考学习资料给了我们, 这是codelabs上的教程:<TensorFlow and deep lear ...
- 建设基于TensorFlow的深度学习环境
一.使用yum安装git 1.查看系统是否已经安装git git --version 2.yum 安装git yum install git 3.安装成功 git --version 4.进入指定目录 ...
- 碰到的问题——建设基于TensorFlow的深度学习环境
1.解决jupyter notebook问题:socket.error: [Errno 99] Cannot assign requested address 首先要生成一个jupyter的配置文件: ...
- 大数据下基于Tensorflow框架的深度学习示例教程
近几年,信息时代的快速发展产生了海量数据,诞生了无数前沿的大数据技术与应用.在当今大数据时代的产业界,商业决策日益基于数据的分析作出.当数据膨胀到一定规模时,基于机器学习对海量复杂数据的分析更能产生较 ...
- 使用腾讯云 GPU 学习深度学习系列之二:Tensorflow 简明原理【转】
转自:https://www.qcloud.com/community/article/598765?fromSource=gwzcw.117333.117333.117333 这是<使用腾讯云 ...
- 深度学习系列 Part(3)
这是<GPU学习深度学习>系列文章的第三篇,主要是接着上一讲提到的如何自己构建深度神经网络框架中的功能模块,进一步详细介绍 Tensorflow 中 Keras 工具包提供的几种深度神经网 ...
- 【深度学习系列3】 Mariana CNN并行框架与图像识别
[深度学习系列3] Mariana CNN并行框架与图像识别 本文是腾讯深度学习系列文章的第三篇,聚焦于腾讯深度学习平台Mariana中深度卷积神经网络Deep CNNs的多GPU模型并行和数据并行框 ...
随机推荐
- Excel uploading date format
if l_wa_field-value eq 'ZFIRST_REQ_DATE'. clear lv_length. lv_length = strlen( l_wa_excel-value ). c ...
- SpringBoot集成MongoDB
前言 之前写了各种nosql数据库的比较,以及相关理论,现在我在本地以springboot+MongoDB框架,探究了具体的运行流程,下面总结一下,分享给大家. 运行前准备 安装并启动MongoDB应 ...
- MVC开发T4代码生成之二----vs模板扩展
在上一篇MVC开发T4代码生成之一----文本模板基础中介绍了与T4模板相关的基础知识,并对MVC内使用T4模板添加视图做了介绍.知道了T4模板的使用后自然就想着怎么对vs自带的T4模板进行扩展,添加 ...
- 第二期,问道PC端游戏免安装,下载即可体验
最近 迷恋游戏搭建不能自拔.搭建过 手游梦幻诛仙,传奇等等. 今天还是推荐PC端的问道这款游戏,原因是个人投入修改的时间太多了.基本完善了好多.这还得感谢这都是论坛的各位大佬体验的结果. 原来这个游戏 ...
- webuploader在ie9以下失效原因
在项目中为了兼容ie9,使用webuploader插件,发现在部分电脑的ie9模式下点击无响应,排查原因,最终发现是不是插件有问题,而是ie浏览器没有flash的加载项,最终下载flash,并安装运行 ...
- Ubuntu16.04 静态IP设置
为VMware虚拟机内安装的Ubuntu 16.04设置静态IP地址NAT方式 1.安装环境 VMware 12 Ubuntu 16.04 x86_64 2.在VMware中,配置网络环境 VMwar ...
- mac sublime3 无法安装Package Control
一.在线安装 1.打开sublime,Ctrl+` 打开控制台, 输入 import urllib.request,os,hashlib; h = '6f4c264a24d933ce70df5dedc ...
- composer 镜像地址
composer config -g repo.packagist composer https://packagist.composer-proxy.orgcomposer config -g re ...
- java idea导入ecli项目
转:https://blog.csdn.net/deng11408205/article/details/79723213 1.关闭所有项目:开启idea进入导入项目选项 2.选择.classpath ...
- 使用SQL创建唯一索引
使用sql语句创建唯一索引,格式如下: create unique index 索引名 on 表名(列名1,列名2……) 示例:在表GoodsMade_Labour的SID列上创建唯一索引IX_Goo ...