题目描述

Farmer John has N barren pastures (2 <= N <= 100,000) connected by N-1 bidirectional roads, such that there is exactly one path between any two pastures. Bessie, a cow who loves her grazing time, often complains about how there is no grass on the roads between pastures. Farmer John loves Bessie very much, and today he is finally going to plant grass on the roads. He will do so using a procedure consisting of M steps (1 <= M <= 100,000).

At each step one of two things will happen:

  • FJ will choose two pastures, and plant a patch of grass along each road in between the two pastures, or,

  • Bessie will ask about how many patches of grass on a particular road, and Farmer John must answer her question.

Farmer John is a very poor counter -- help him answer Bessie's questions!

给出一棵n个节点的树,有m个操作,操作为将一条路径上的边权加一或询问某条边的权值。

输入输出格式

输入格式:

  • Line 1: Two space-separated integers N and M

  • Lines 2..N: Two space-separated integers describing the endpoints of a road.

  • Lines N+1..N+M: Line i+1 describes step i. The first character of the line is either P or Q, which describes whether or not FJ is planting grass or simply querying. This is followed by two space-separated integers A_i and B_i (1 <= A_i, B_i <= N) which describe FJ's action or query.

输出格式:

  • Lines 1..???: Each line has the answer to a query, appearing in the same order as the queries appear in the input.

输入输出样例

输入样例#1: 复制

4 6
1 4
2 4
3 4
P 2 3
P 1 3
Q 3 4
P 1 4
Q 2 4
Q 1 4
输出样例#1: 复制

2
1
2

树链剖分的裸题

但是这个题是在边上进行操作

我们考虑把边上的操作转移到点上

首先想一下最简单的链的情况

对于区间$[l,r]$的操作会影响$r-l+1$个点,但只会影响$r-l$条边

那么我们可以把每条边的边权都放在与它相连的两个点中深度较深的点上

所以我们每次修改的时候都对$(l,r]$进行修改

查询的时候也如此,

具体怎么实现呢?so easy:joy:

只需要在查询/修改的时候把左区间+1即可

注意特判一下x==y的情况

#include<iostream>
#include<cstdio>
#include<cstring>
#define ls k<<1
#define rs k<<1|1
#define LL long long int
using namespace std;
const int MAXN=1e6+;
inline int read()
{
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'',c=getchar();}
return x*f;
}
int root=;
struct node
{
int u,v,w,nxt;
}edge[MAXN];
int head[MAXN];
int num=;
inline void AddEdge(int x,int y)
{
edge[num].u=x;
edge[num].v=y;
edge[num].nxt=head[x];
head[x]=num++;
}
struct Tree
{
int l,r,f,w,siz;
}T[MAXN];
int a[MAXN],b[MAXN],tot[MAXN],idx[MAXN],deep[MAXN],son[MAXN],top[MAXN],fa[MAXN],cnt=;
void update(int k)
{
T[k].w=T[ls].w+T[rs].w;
}
void PushDown(int k)
{
if(!T[k].f) return ;
T[ls].w+=T[k].f*T[ls].siz;
T[rs].w+=T[k].f*T[rs].siz;
T[ls].f+=T[k].f;
T[rs].f+=T[k].f;
T[k].f=;
}
int dfs1(int now,int f,int dep)
{
deep[now]=dep;
tot[now]=;
fa[now]=f;
int maxson=-;
for(int i=head[now];i!=-;i=edge[i].nxt)
{
if(edge[i].v==f) continue;
tot[now]+=dfs1(edge[i].v,now,dep+);
if(tot[edge[i].v]>maxson) maxson=tot[edge[i].v],son[now]=edge[i].v;
}
return tot[now];
}
void dfs2(int now,int topf)
{
idx[now]=++cnt;
a[cnt]=b[now];
top[now]=topf;
if(!son[now]) return ;
dfs2(son[now],topf);
for(int i=head[now];i!=-;i=edge[i].nxt)
if(!idx[edge[i].v])
dfs2(edge[i].v,edge[i].v);
}
void Build(int k,int ll,int rr)
{
T[k].l=ll;T[k].r=rr;T[k].siz=rr-ll+;
if(ll==rr)
{
T[k].w=a[ll];
return ;
}
int mid=(ll+rr)>>;
Build(ls,ll,mid);
Build(rs,mid+,rr);
update(k);
}
void IntervalAdd(int k,int ll,int rr,int val)
{
if(ll<=T[k].l&&T[k].r<=rr)
{
T[k].w+=T[k].siz*val;
T[k].f+=val;
return ;
}
PushDown(k);
int mid=(T[k].l+T[k].r)>>;
if(ll<=mid) IntervalAdd(ls,ll,rr,val);
if(rr>mid) IntervalAdd(rs,ll,rr,val);
update(k);
}
int IntervalAsk(int k,int ll,int rr)
{
int ans=;
if(ll<=T[k].l&&T[k].r<=rr)
{
ans+=T[k].w;
return ans;
}
PushDown(k);
int mid=(T[k].l+T[k].r)>>;
if(ll<=mid) ans+=IntervalAsk(ls,ll,rr);
if(rr>mid) ans+=IntervalAsk(rs,ll,rr);
return ans;
}
int TreeSum(int x,int y)
{
int ans=;
while(top[x]!=top[y])//不在同一条链内
{
if(deep[top[x]]<deep[top[y]]) swap(x,y);
ans+=IntervalAsk(,idx[top[x]],idx[x]);
x=fa[top[x]];
}
if(deep[x]>deep[y]) swap(x,y);
if(x==y) return ans;
ans+=IntervalAsk(,idx[x]+,idx[y]);//需要修改的地方
return ans;
}
void TreeAdd(int x,int y)
{
while(top[x]!=top[y])//不在同一条链内
{
if(deep[top[x]]<deep[top[y]]) swap(x,y);
IntervalAdd(,idx[top[x]],idx[x],);
x=fa[top[x]];
}
if(deep[x]>deep[y]) swap(x,y);
if(x==y) return ;
IntervalAdd(,idx[x]+,idx[y],);//需要修改的地方
}
int main()
{
#ifdef WIN32
freopen("a.in","r",stdin);
#else
#endif
memset(head,-,sizeof(head));
int N=read(),M=read();
for(int i=;i<=N-;i++)
{
int x=read(),y=read();
AddEdge(x,y);AddEdge(y,x);
}
dfs1(root,,);
dfs2(root,root);
Build(,,N);
while(M--)
{
char opt[];int x,y;
scanf("%s",opt);x=read();y=read();
if(opt[]=='P')
TreeAdd(x,y);
else
printf("%d\n",TreeSum(x,y)); }
return ;
}

洛谷P3038 [USACO11DEC]牧草种植Grass Planting的更多相关文章

  1. 洛谷 P3038 [USACO11DEC]牧草种植Grass Planting

    题目描述 Farmer John has N barren pastures (2 <= N <= 100,000) connected by N-1 bidirectional road ...

  2. 洛谷 P3038 [USACO11DEC]牧草种植Grass Planting(树链剖分)

    题解:仍然是无脑树剖,要注意一下边权,然而这种没有初始边权的题目其实和点权也没什么区别了 代码如下: #include<cstdio> #include<vector> #in ...

  3. P3038 [USACO11DEC]牧草种植Grass Planting

    题目描述 Farmer John has N barren pastures (2 <= N <= 100,000) connected by N-1 bidirectional road ...

  4. AC日记——[USACO11DEC]牧草种植Grass Planting 洛谷 P3038

    题目描述 Farmer John has N barren pastures (2 <= N <= 100,000) connected by N-1 bidirectional road ...

  5. 树链剖分【p3038】[USACO11DEC]牧草种植Grass Planting

    表示看不太清. 概括题意 树上维护区间修改与区间和查询. 很明显树剖裸题,切掉,细节处错误T了好久 TAT 代码 #include<cstdio> #include<cstdlib& ...

  6. [USACO11DEC]牧草种植Grass Planting

    图很丑.明显的树链剖分,需要的操作只有区间修改和区间查询.不过这里是边权,我们怎么把它转成点权呢?对于E(u,v),我们选其深度大的节点,把边权扔给它.因为这是树,所以每个点只有一个父亲,所以每个边权 ...

  7. 【LuoguP3038/[USACO11DEC]牧草种植Grass Planting】树链剖分+树状数组【树状数组的区间修改与区间查询】

    模拟题,可以用树链剖分+线段树维护. 但是学了一个厉害的..树状数组的区间修改与区间查询.. 分割线里面的是转载的: ----------------------------------------- ...

  8. 洛谷P3038 牧草种植Grass Planting

    思路: 首先,这道题的翻译是有问题的(起码现在是),查询的时候应该是查询某一条路径的权值,而不是某条边(坑死我了). 与平常树链剖分题目不同的是,这道题目维护的是边权,而不是点权,那怎么办呢?好像有点 ...

  9. 洛谷P3038 牧草种植 [树链剖分]

    题目传送门 牧草种植 题目描述 Farmer John has N barren pastures (2 <= N <= 100,000) connected by N-1 bidirec ...

随机推荐

  1. 微信小程序快捷键(Mac和windows)

    最近因为有点闲暇时间,所以抽空简单了解了小程序,因为小程序是使用微信开发者工具编码,不能使用其它编辑器,比如,Sublime,Hubilder等. 所以就百度了一下小程序快捷键,但总觉得不全,所以就去 ...

  2. [Postman]授权(11)

    授权过程将验证您是否有权从服务器访问所需的数据.发送请求时,通常必须包含参数以确保请求具有访问权限并返回所需数据.Postman提供的授权类型使您可以轻松处理Postman本机应用程序中的身份验证协议 ...

  3. Mybatis+Thymeleaf开发遇到的几个问题笔录

    我的开发工具是IntelliJ IDEA,然后在SpringBoot集成Mybatis,前端用模块引擎Thymeleaf的过程中遇到几个问题,不过也花了点时间,现在记录下来,作为笔记记录. Inval ...

  4. 使用token和redis怎样判断账户是否失效和异地登录

    思路: 将token作为value,账户的id作为key 每次登录都去redis中查询该账户的登录是否过期,没有过期则删掉原来的id,token,将新生成token作为value存入redis中.过期 ...

  5. RIPng配置(第十三组)

    拓扑如下 配置rip指令和ipv6包允许路由指令以r1为例 在r1上配置拓扑上对应网段的ip,r1上两个连接路由器的端口手动设置ip,同网段的路由器端口ip自动获取. r2配置 r3 配置完后查看路由 ...

  6. [Jenkins]IOS构建机配置记录

    ------------------- 如需转载,请注明出处 ------------------- 随着业务量和开发人员的递增,IOS构建每天都会排队,影响研发效率.随购买了新的垃圾桶,进行配置. ...

  7. 如何正确的在项目中接入微信JS-SDK

    微信JS-SDK的功能 如果你点进来,那么我相信你应该知道微信的JS-SDK可以用来做什么了.微信的官方文档描述如下. 微信JS-SDK是微信公众平台面向网页开发者提供的基于微信内的网页开发工具包. ...

  8. SQL语句方法语法总结(一)

    1.distinct:返回不重复.唯一的值. select distinct col_name from tbl_name --表中的col_name 列的值 如果有10条一样的,仅返回一条. 2.w ...

  9. Java 容器源码分析之 LinkedList

    概览 同 ArrayList 一样,LinkedList 也是对 List 接口的一种具体实现.不同的是,ArrayList 是基于数组来实现的,而 LinkedList 是基于双向链表实现的.Lin ...

  10. Docker 设置固定网络IP

    1.创建自定义网络: 2.查看自定义网络: 3.启动容器: 4.查看容器IP: