Sereja and Sets

我们先考虑对于一堆线段我们怎么求最大的不相交的线段数量。

我们先按 r 排序, 然后能选就选。

所以我们能想到我们用$dp[ i ][ j ]$表示已经选了 i 个线段, 最后一个被选的线段的右端点是 j 的方案数。

对于dp[ i ][ j ] -> dp[ i + 1 ][ k ], 所有能满足左端点 > j 右端点为 k 的方案数为1 << (k - j)种, 其他可以随意

放上取的方案数为1 << ( ( n - z ) * ( z - j ) )种, 所以可以得到

dp[ i + 1 ][ z ] += dp[ i ][ j ] * pow2[ (n - z) * (z - j) ] % mod * (pow2[ z - j ] - 1)

#include<bits/stdc++.h>
#define LL long long
#define LD long double
#define fi first
#define se second
#define mk make_pair
#define PLL pair<LL, LL>
#define PLI pair<LL, int>
#define PII pair<int, int>
#define SZ(x) ((int)x.size())
#define ull unsigned long long using namespace std; const int N = + ;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const int mod = 1e9 + ;
const double eps = 1e-;
const double PI = acos(-); template<class T, class S> inline void add(T& a, S b) {
a += b; if(a >= mod) a -= mod;
}
template<class T, class S> inline void sub(T& a, S b) {
a -= b; if(a < ) a += mod;
}
template<class T, class S> inline bool chkmax(T& a, S b) {
return a < b ? a = b, true : false;
}
template<class T, class S> inline bool chkmin(T& a, S b) {
return a > b ? a = b, true : false;
} int n, k;
int dp[N][N];
int pow2[N * N]; int main() {
for(int i = pow2[] = ; i < N * N; i++)
pow2[i] = 1LL * pow2[i - ] * % mod;
scanf("%d%d", &n, &k);
dp[][] = ;
for(int i = ; i < k; i++) {
for(int j = ; j <= n; j++) {
if(!dp[i][j]) continue;
for(int z = j + ; z <= n; z++) {
add(dp[i + ][z], 1LL * dp[i][j] * pow2[(n - z) * (z - j)] % mod * (pow2[z - j] - ) % mod);
}
}
}
int ans = ;
for(int i = ; i <= n; i++)
add(ans, dp[k][i]);
printf("%d\n", ans);
return ;
} /*
*/

Codeforces 425E Sereja and Sets dp的更多相关文章

  1. CodeForces 425E Sereja and Sets

    意甲冠军: 集S它包括了很多间隔[l,r]  和1<=l<=r<=n  f(S)个不相交的区间  问给出n和f(S)  有几种可能的S集合 思路: dp好题  至于为啥是dp-  我 ...

  2. CodeForces - 425E Sereja and Sets 题解

    题目大意: 我们有一个集合 S,其中包含了 m 个不完全相同的区间[l1,r1],[l2,r2]…[lm,rm] (1≤li≤ri≤n,li,ri 都为整数). 定义 f(S)=k,表示集合 S 中能 ...

  3. Codeforces.314E.Sereja and Squares(DP)

    题目链接 http://www.cnblogs.com/TheRoadToTheGold/p/8443668.html \(Description\) 给你一个擦去了部分左括号和全部右括号的括号序列, ...

  4. [BZOJ 3625] [Codeforces 438E] 小朋友的二叉树 (DP+生成函数+多项式开根+多项式求逆)

    [BZOJ 3625] [Codeforces 438E] 小朋友的二叉树 (DP+生成函数+多项式开根+多项式求逆) 题面 一棵二叉树的所有点的点权都是给定的集合中的一个数. 让你求出1到m中所有权 ...

  5. codeforces 425C Sereja and Two Sequences(DP)

    题意读了好久才读懂....不知道怎么翻译好~~请自便~~~ http://codeforces.com/problemset/problem/425/C 看懂之后纠结好久...不会做...仍然是看题解 ...

  6. CodeForces - 314C Sereja and Subsequences (树状数组+dp)

    Sereja has a sequence that consists of n positive integers, a1, a2, ..., an. First Sereja took a pie ...

  7. Codeforces Round #277 (Div. 2) D. Valid Sets (DP DFS 思维)

    D. Valid Sets time limit per test 1 second memory limit per test 256 megabytes input standard input ...

  8. Codeforces Round #277 (Div. 2) D. Valid Sets DP

    D. Valid Sets   As you know, an undirected connected graph with n nodes and n - 1 edges is called a  ...

  9. codeforces 486 D. Valid Sets(树形dp)

    题目链接:http://codeforces.com/contest/486/problem/D 题意:给出n个点,还有n-1条边的信息,问这些点共能构成几棵满足要求的树,构成树的条件是. 1)首先这 ...

随机推荐

  1. zabbix添加对centos系统内存使用率百分比的监控

    1.创建itemConfiguration-->Templates-->Template OS Linux-->items-->create item name:memory ...

  2. CANopen--Copley驱动器 ACJ-055-18 过程数据PDO的断电保存方法

    Copley CANopen 系列驱动器中,均保存有默认的 PDO 设置, 如下图所示 实际使用中,往往需要修改默认的 PDO 配置,以映射不同模式或功能下的 PDO 对象,但由于 PDO 配置无法存 ...

  3. minicom的配置和使用

    安装配置minicom--------------------------------------------------# lsmod | grep usbserial (如果直接使用串口线,而没有 ...

  4. CSS 三角形与圆形

    1. 概述 1.1 说明 通过边框(border)的宽度与边框圆角(border-radius)来设置所需的三角形与圆形. 1.2 边框 宽高都为0时,边框设置的不同结果也不同,如下: 1.四个边框都 ...

  5. BeautifulSoup解析器的选择

    BeautifulSoup解析器 在我们使用BeautifulSoup的时候,选择怎样的解析器是至关重要的.使用不同的解析器有可能会出现不同的结果! 今天遇到一个坑,在解析某html的时候.使用htm ...

  6. 洛谷P4827 [国家集训队] Crash 的文明世界 [斯特林数,组合数,DP]

    传送门 思路 又见到这个\(k\)次方啦!按照套路,我们将它搞成斯特林数: \[ ans_x=\sum_{i=0}^k i!S(k,i)\sum_y {dis(x,y) \choose i} \] 前 ...

  7. 深入理解ajax

    http://www.imooc.com/code/13468    基础练习 http://www.imooc.com/video/5644            !ajax! 常用   for   ...

  8. μCUnit,微控制器的单元测试框架

    在MCU on Eclipse网站上看到Erich Styger在8月26日发布的博文,一篇关于微控制器单元测试的文章,有很高的参考价值,特将其翻译过来以备学习.原文网址:https://mcuone ...

  9. ios消息机制

    ios消息机制介绍 ios 调用每一个方法的时候其实是走的ios的消息机制 举例介绍一下 创建一个Pserson类 有一个eat 对象方法 那么下面的代码可以用消息机制实现  导入消息头文件    # ...

  10. algorithm的基本注意事项

    find(): 返还指向该迭代器的指针,找不到返还last:lnlt find(lnlt first,lnlt last ,const T&val);范围[first,last); list: ...