一 (0,1)标准化:

这是最简单也是最容易想到的方法,通过遍历feature vector里的每一个数据,将Max和Min的记录下来,并通过Max-Min作为基数(即Min=0,Max=1)进行数据的归一化处理:

python的代码实现:

#-*-coding:utf-8-*-
import numpy as np def MaxMinNormalization(x,Max,Min):
x = (x - Min) / (Max - Min);
return x; a = np.array([[1,2,3],[4,5,6]])
print(MaxMinNormalization(a,3,0))

  二 Z-score标准化:

  这种方法给予原始数据的均值(mean)和标准差(standard deviation)进行数据的标准化。

经过处理的数据符合标准正态分布,即均值为0,标准差为1,这里的关键在于复合标准正态分布,个人认为在一定程度上改变了特征的分布,关于使用经验上欢迎讨论,转化函数为:

这里一样,mu(即均值)用np.average(),sigma(即标准差)用np.std()即可.

  python的源码实现:

def Z_ScoreNormalization(x,mu,sigma):
x = (x - mu) / sigma;
return x; b = np.array([[1,2,3],[4,5,6]])
print(Z_ScoreNormalization(b,b.mean(),b.std()))

  三 Sigmoid函数

  Sigmoid函数是一个具有S形曲线的函数,是良好的阈值函数,在(0, 0.5)处中心对称,在(0, 0.5)附近有比较大的斜率而当数据趋向于正无穷和负无穷的时候,映射出来的值就会无限趋向于1和0.

个人非常喜欢的“归一化方法”,之所以打引号是因为我觉得Sigmoid函数在阈值分割上也有很不错的表现,根据公式的改变,就可以改变分割阈值,这里作为归一化方法,我们只考虑(0, 0.5)作为分割阈值的点的情况:

python 源码:

  

def sigmoid(X,useStatus):
if useStatus:
#return 1.0 / (1 + np.exp(-float(X)))
return 1.0 / (1 + np.exp(-X))
else:
return float(X) c = np.array([[1,2,3],[4,5,6]])
print(sigmoid(c,1))

  参考文档:

1 https://blog.csdn.net/sinat_36458870/article/details/79498302

几种归一化方法的概念及python实现的更多相关文章

  1. day-14 回归中的相关系数和决定系数概念及Python实现

    衡量一个回归模型常用的两个参数:皮尔逊相关系数和R平方 一.皮尔逊相关系数 在统计学中,皮尔逊相关系数( Pearson correlation coefficient),又称皮尔逊积矩相关系数(Pe ...

  2. Spark ML 几种 归一化(规范化)方法总结

    规范化,有关之前都是用 python写的,  偶然要用scala 进行写, 看到这位大神写的, 那个网页也不错,那个连接图做的还蛮不错的,那天也将自己的博客弄一下那个插件. 本文来源 原文地址:htt ...

  3. 再谈机器学习中的归一化方法(Normalization Method)

    机器学习.数据挖掘工作中,数据前期准备.数据预处理过程.特征提取等几个步骤几乎要花费数据工程师一半的工作时间.同时,数据预处理的效果也直接影响了后续模型能否有效的工作.然而,目前的大部分学术研究主要集 ...

  4. python中常用的九种预处理方法

    本文总结的是我们大家在python中常见的数据预处理方法,以下通过sklearn的preprocessing模块来介绍; 1. 标准化(Standardization or Mean Removal ...

  5. python字符串替换的2种有效方法

    python 字符串替换可以用2种方法实现:1是用字符串本身的方法.2用正则来替换字符串 下面用个例子来实验下:a = 'hello word'我把a字符串里的word替换为python1用字符串本身 ...

  6. 4种更快更简单实现Python数据可视化的方法

    数据可视化是数据分析或机器学习项目中十分重要的一环.通常,你需要在项目初期进行探索性的数据分析(EDA),从而对数据有一定的了解,而且创建可视化确实可以使分析的任务更清晰.更容易理解,特别是对于大规模 ...

  7. Python爬虫突破封禁的6种常见方法

    转 Python爬虫突破封禁的6种常见方法 2016年08月17日 22:36:59 阅读数:37936 在互联网上进行自动数据采集(抓取)这件事和互联网存在的时间差不多一样长.今天大众好像更倾向于用 ...

  8. Python队列的三种队列方法

    今天讲一下队列,用到一个python自带的库,queue 队列的三种方法有: 1.FIFO先入先出队列(Queue) 2.LIFO后入先出队列(LifoQueue) 3.优先级队列(PriorityQ ...

  9. Python+Selenium自动化-设置等待三种等待方法

    Python+Selenium自动化-设置等待三种等待方法   如果遇到使用ajax加载的网页,页面元素可能不是同时加载出来的,这个时候,就需要我们通过设置一个等待条件,等待页面元素加载完成,避免出现 ...

随机推荐

  1. jquery操作select下拉框的多种方法(选中,取值,赋值等)

    Query获取Select选择的Text和Value: 语法解释: 1. $("#select_id").change(function(){//code...}); //为Sel ...

  2. 手绘raft算法

    手绘raft算法 互联网技术窝 2019-04-07 12:06:05 在现实的分布式系统中,不能可能保证集群中的每一台机器都是100%可用可靠的,集群中的任何机器都可能发生宕机.网络连接等问题导致集 ...

  3. centos6.6安装Elasticsearch

    1. 安装jar8 yum list java-1.8* sudo yum install java-1.8.0-openjdk* -y java --version 2. 安装elasticsear ...

  4. Sublime Text 3安装emmet(ZenCoding)

    1.安装 Package Ctrol: 使用 ctrl + - 打开控制台,输入以下代码 import urllib.request,os; pf = 'Package Control.sublime ...

  5. java32

    1.抽象类必须有子类才有意义 2.子类中会默认有构造器来调用父类的构造器 3.接口:表示一种规范 interface 接口名(命名规则:在名称前加上I后加上able){ } -2接口也生成对应的字节码 ...

  6. 【NIFI】 Apache NiFI 授权配置

    当NIFI未配置需要单向SSL(例如LDAP,OpenId Connect等)的替代认证机制时,NiFi的Web服务器将要求访问用户界面的用户使用基于证书的客户端身份验证.启用备用身份验证机制会将We ...

  7. 2019-1-18 Spark 机器学习

    2019-1-18 Spark 机器学习 机器学习 模MLib板 预测 //有视频 后续会补充 1547822490122.jpg 1547822525716.jpg 1547822330358.jp ...

  8. windowsSevice程序和topshelf程序创建服务对比

    文章原地址:http://www.80iter.com/blog/1451523192435464 Topshelf 创建.net服务整理和安装步骤 windowsService和topshelf服务 ...

  9. redis学习-集合set常用命令

    redis学习-集合set常用命令   1.sadd:添加一个元素到集合中(集合中的元素无序的并且唯一) 2.smembers:查看集合中所有的元素(上图事例) 3.srem:删除结合中指定的元素 4 ...

  10. (转载)sqlmap用户手册详解

    文章转载自 http://www.vuln.cn/2035 当给sqlmap这么一个url (http://www.target.com/sqlmap/mysql/get_int.php?id=1) ...