线性回归(Linear Regression)是利用称为线性回归方程的最小平方函数对一个或多个自变量因变量之间关系进行建模的一种回归分析

这种函数是一个或多个称为回归系数的模型参数的线性组合。只有一个自变量的情况称为一元线性回归,大于一个自变量情况的叫做多元线性回归。

代码实现:
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.DataFrame
import org.apache.spark.ml.feature.VectorAssembler
import org.apache.spark.ml.regression.LinearRegression
/**
  * Created by zhen on 2018/3/10.
  */
object LinearRegression {
  def main(args: Array[String]) {
    //设置环境
  val spark = SparkSession.builder ().appName ("LinearRegressionTest").master ("local[2]").getOrCreate()
    val sc = spark.sparkContext
    val sqlContext = spark.sqlContext
    //准备训练集合
    val raw_data = sc.textFile("src/sparkMLlib/man.txt")
    val map_data = raw_data.map{x=>
      val mid = x.replaceAll(","," ,")
      val split_list = mid.substring(0,mid.length-1).split(",")
      for(x <- 0 until split_list.length){
        if(split_list(x).trim.equals("")) split_list(x) = "0.0" else split_list(x) = split_list(x).trim
      }
      ( split_list(1).toDouble,split_list(2).toDouble,split_list(3).toDouble,split_list(4).toDouble,
        split_list(5).toDouble,split_list(6).toDouble,split_list(7).toDouble,split_list(8).toDouble,
        split_list(9).toDouble,split_list(10).toDouble,split_list(11).toDouble)
    }
    val mid = map_data.sample(false,0.6,0)//随机取样,训练模型
    val df = sqlContext.createDataFrame(mid)
    val colArray = Array("c1", "c2", "c3", "c4", "c5", "c6", "c7", "c8", "c9", "c10", "c11")
    val data = df.toDF("c1", "c2", "c3", "c4", "c5", "c6", "c7", "c8", "c9", "c10", "c11")
    val assembler = new VectorAssembler().setInputCols(colArray).setOutputCol("features")
    val vecDF = assembler.transform(data)
    //准备预测集合
    val map_data_for_predict = map_data
    val df_for_predict = sqlContext.createDataFrame(map_data_for_predict)
    val data_for_predict = df_for_predict.toDF("c1", "c2", "c3", "c4", "c5", "c6", "c7", "c8", "c9", "c10", "c11")
    val colArray_for_predict = Array("c1", "c2", "c3", "c4", "c5", "c6", "c7", "c8", "c9", "c10", "c11")
    val assembler_for_predict = new VectorAssembler().setInputCols(colArray_for_predict).setOutputCol("features")
    val vecDF_for_predict: DataFrame = assembler_for_predict.transform(data_for_predict)
    // 建立模型,进行预测
    // 设置线性回归参数
    val lr1 = new LinearRegression()
    val lr2 = lr1.setFeaturesCol("features").setLabelCol("c5").setFitIntercept(true)
    // RegParam:正则化
    val lr3 = lr2.setMaxIter(10).setRegParam(0.3).setElasticNetParam(0.8)
    // 将训练集合代入模型进行训练
    val lrModel = lr3.fit(vecDF)
    // 输出模型全部参数
    lrModel.extractParamMap()
    //coefficients 系数 intercept 截距
    println(s"Coefficients: ${lrModel.coefficients} Intercept: ${lrModel.intercept}")
    // 模型进行评价
    val trainingSummary = lrModel.summary
    trainingSummary.residuals.show()
    println(s"均方根差: ${trainingSummary.rootMeanSquaredError}")//RMSE:均方根差
    println(s"判定系数: ${trainingSummary.r2}")//r2:判定系数,也称为拟合优度,越接近1越好
    val predictions = lrModel.transform(vecDF_for_predict)
    val predict_result = predictions.selectExpr("features","c5", "round(prediction,1) as prediction")
    predict_result.rdd.saveAsTextFile("src/sparkMLlib/manResult")
    sc.stop()
  }
}

性能评估:

结果:

Spark MLlib线性回归代码实现及结果展示的更多相关文章

  1. Spark MLlib 示例代码阅读

    阅读前提:有一定的机器学习基础, 本文重点面向的是应用,至于机器学习的相关复杂理论和优化理论,还是多多看论文,初学者推荐Ng的公开课 /* * Licensed to the Apache Softw ...

  2. Spark MLlib回归算法------线性回归、逻辑回归、SVM和ALS

    Spark MLlib回归算法------线性回归.逻辑回归.SVM和ALS 1.线性回归: (1)模型的建立: 回归正则化方法(Lasso,Ridge和ElasticNet)在高维和数据集变量之间多 ...

  3. Spark MLlib之线性回归源代码分析

    1.理论基础 线性回归(Linear Regression)问题属于监督学习(Supervised Learning)范畴,又称分类(Classification)或归纳学习(Inductive Le ...

  4. Spark mllib 随机森林算法的简单应用(附代码)

    此前用自己实现的随机森林算法,应用在titanic生还者预测的数据集上.事实上,有很多开源的算法包供我们使用.无论是本地的机器学习算法包sklearn 还是分布式的spark mllib,都是非常不错 ...

  5. Spark Mllib里如何生成KMeans的训练样本数据、生成线性回归的训练样本数据、生成逻辑回归的训练样本数据和其他数据生成

    不多说,直接上干货! 具体,见 Spark Mllib机器学习(算法.源码及实战详解)的第2章 Spark数据操作

  6. Spark入门实战系列--8.Spark MLlib(上)--机器学习及SparkMLlib简介

    [注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .机器学习概念 1.1 机器学习的定义 在维基百科上对机器学习提出以下几种定义: l“机器学 ...

  7. Spark MLlib 机器学习

    本章导读 机器学习(machine learning, ML)是一门涉及概率论.统计学.逼近论.凸分析.算法复杂度理论等多领域的交叉学科.ML专注于研究计算机模拟或实现人类的学习行为,以获取新知识.新 ...

  8. 《Spark MLlib机器学习实践》内容简介、目录

      http://product.dangdang.com/23829918.html Spark作为新兴的.应用范围最为广泛的大数据处理开源框架引起了广泛的关注,它吸引了大量程序设计和开发人员进行相 ...

  9. Spark入门实战系列--8.Spark MLlib(下)--机器学习库SparkMLlib实战

    [注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .MLlib实例 1.1 聚类实例 1.1.1 算法说明 聚类(Cluster analys ...

随机推荐

  1. 开始翻译Disruptor

    刚开始接触Disruptor,看了作者的博客,发现这个大牛很与众不同,他不仅讲解自己的框架的设计思想,还深度介绍了这样设计的原因,其知识范围涵盖了操作系统.数据结构.计算机组成,很有学习的价值.网上有 ...

  2. 【Flask-RESTPlus系列】Part3:请求解析

    0x00 内容概览 请求解析 基本参数 必需参数 多值和列表 其他目标 参数位置 参数多个位置 高级类型处理 解析器继承 文件上传 错误处理 错误消息 参考链接 0x01 请求解析 注意:Flask- ...

  3. jdk 8 的内存参数修改

    jdk内存实际是jvm内存,jvm有一个运行时数据区,其实就是对这一部分的大小分配.运行时数据区通常包括这几个部分:程序计数器(Program Counter Register).Java栈(VM S ...

  4. Pytorch1.0入门实战二:LeNet、AleNet、VGG、GoogLeNet、ResNet模型详解

    LeNet 1998年,LeCun提出了第一个真正的卷积神经网络,也是整个神经网络的开山之作,称为LeNet,现在主要指的是LeNet5或LeNet-5,如图1.1所示.它的主要特征是将卷积层和下采样 ...

  5. [转]PHP时区/MySql时区/Linux时区

    本文转自:https://blog.csdn.net/watermelonmk/article/details/82669062 问题背景:手头上有个国外的项目,为了所谓的国际化,得将时区修改至[美国 ...

  6. ____利用C#特性Attribute完成对sql语句的拼接

    //定义 特性类: public class MyAttribute : Attribute//自定义注解类判断是否是主键 { public bool PrimaryKey = false; publ ...

  7. Jmter接口网站压力测试工具使用记录

    1.首先下载Jmeter 官方地址:http://jmeter.apache.org/ 2.安装Jmeter 把下载的文件进行解压,产生如下目录: 打开bin文件夹下的jmeter.bat文件及进入程 ...

  8. Spring Boot从入门到精通之:一、Spring Boot简介及快速入门

    Spring Boot Spring Boot 简介 Spring Boot是由Pivotal团队提供的全新框架,其设计目的是用来简化新Spring应用的初始搭建以及开发过程.该框架使用了特定的方式来 ...

  9. Java细节整理——数组与内存控制

    重点:使用Java数组之前,必须对数组对象进行初始化. 当数组的所有元素都被分配了合适的内存空间,并指定了初始值时,数组的初始化完成.程序以后将不能重新改变数组对象在内存中的位置和大小. 知识点整理: ...

  10. node实现简单的群体聊天工具

    一.使用的node模块 1.express当做服务器 2.socket.io 前后通信的桥梁 3.opn默认打开浏览器的模块(本质上用不到) 难点:前后通信 源码地址:https://github.c ...