https://cn.vjudge.net/problem/26727/origin

题目大意:

给一个带权的无向图,保证没有自环和重边. 由于最小生成树不唯一,因此你需要确定每一条边是以下三种情况哪一个 1.一定在所有MST上 2.可能在某个MST上 3.一定不可能在任何MST上 输入

第一行给出n,m表示点数和边数. 数据范围见原题面 之后m行,每行给出ai,bi,wi 表示一个边的两个端点和边的权值.保证没有自环与重边. 输出

一看到这题就觉得似曾相似,仔细一看是某场比赛里卡了我三个小时的类似题,当时由于题解写的和我写的算法不一样,没有去补题。这次遇到这题偶然发现由于这题的数据开大了,之前那题的暴力算法走不通了,正好用到了我之前写了很久没找出bug的算法。

第一步显然是将所有边按权值从小到大排序,将每层权值相同的边分开来做。

第二步显然是将每层所有两点已经联通的点打上none的标记

问题在于分开必通过和可以不通过的边,上次只想到了dfs,也想到将所有已联合的点形成联通快找联通快之间必连的点,这次看了题解,发现这种联通块之间必须链接的点被称为桥,必须连接的点成为割点,寻找桥和割点都是通过tarjan算法实现的,也就是基于dfs打一个时间戳实现。

所以我们只要每一层进行见图找出所有的桥即可解决问题。

#include <map>
#include <set>
#include <ctime>
#include <cmath>
#include <queue>
#include <stack>
#include <vector>
#include <string>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <sstream>
#include <iostream>
#include <algorithm>
#include <functional>
using namespace std;
#define For(i, x, y) for(int i=x;i<=y;i++)
#define _For(i, x, y) for(int i=x;i>=y;i--)
#define Mem(f, x) memset(f,x,sizeof(f))
#define Sca(x) scanf("%d", &x)
#define Sca2(x,y) scanf("%d%d",&x,&y)
#define Scl(x) scanf("%lld",&x);
#define Pri(x) printf("%d\n", x)
#define Prl(x) printf("%lld\n",x);
#define CLR(u) for(int i=0;i<=N;i++)u[i].clear();
#define LL long long
#define ULL unsigned long long
#define mp make_pair
#define PII pair<int,int>
#define PIL pair<int,long long>
#define PLL pair<long long,long long>
#define pb push_back
#define fi first
#define se second
typedef vector<int> VI;
const double eps = 1e-;
const int maxn = 1e5 + ;
const int INF = 0x3f3f3f3f;
const int mod = 1e9 + ;
int N,M,tmp,K,tot,index;
int tree[maxn];
int type[maxn];
int vis[maxn];
int head[maxn];
struct Query{
int u,v,w,id;
}q[maxn];
struct Edge{
int v,next,id;
}edge[maxn * ];
bool cmp(Query a,Query b){
return a.w < b.w;
}
int find(int p){
if(p == tree[p]) return p;
return tree[p] = find(tree[p]);
}
void Union(int a,int b){
a = find(a); b = find(b);
tree[a] = b;
}
void add(int u,int v,int id){
edge[tot].v = v;
edge[tot].next = head[u];
edge[tot].id = id;
head[u] = tot++;
}
int dfs(int u,int last){
int lowu = vis[u] = ++index;
for(int i = head[u]; ~i;i = edge[i].next){
int v = edge[i].v;
if(!vis[v]){
int lowv = dfs(v,i);
lowu = min(lowu,lowv);
if(lowv > vis[u]) type[edge[i].id] = ;
}else if(vis[v] < vis[u] && i != (last ^ )){
lowu = min(lowu,vis[v]);
}
}
return lowu;
}
int main()
{
scanf("%d%d",&N,&M);
For(i,,M) scanf("%d%d%d",&q[i].u,&q[i].v,&q[i].w),q[i].id = i;
sort(q + ,q + + M,cmp);
For(i,,N) tree[i] = i;
For(i,,M){
int j = i;
while(j <= M && q[j].w == q[i].w)j++; j--;
For(k,i,j){
q[k].u = find(q[k].u);q[k].v = find(q[k].v);
int u = q[k].u; int v = q[k].v;
if(u == v){
type[q[k].id] = ;
continue;
}
type[q[k].id] = ;
vis[u] = vis[v] = ;
head[u] = head[v] = -;
}
index = tot = ;
For(k,i,j){
if(q[k].u != q[k].v){
add(q[k].u,q[k].v,q[k].id);
add(q[k].v,q[k].u,q[k].id);
}
}
For(k,i,j) if(!vis[q[k].u]) dfs(q[k].u,-);
For(k,i,j) Union(q[k].u,q[k].v);
i = j;
}
For(i,,M){
if(!type[i]) puts("none");
else if(type[i] == )puts("any");
else puts("at least one");
}
#ifdef VSCode
system("pause");
#endif
return ;
}

CodeForces160D 最小生成树 + dfs的更多相关文章

  1. HDU 5723 Abandoned country (最小生成树 + dfs)

    Abandoned country 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5723 Description An abandoned coun ...

  2. HDU 5723 Abandoned country (最小生成树+dfs)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5723 n个村庄m条双向路,从中要选一些路重建使得村庄直接或间接相连且花费最少,这个问题就是很明显的求最 ...

  3. hdu4126(最小生成树+dfs)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4126 题意:给出一幅3000个点的图,有10000次操作: 求将某条边的权值变大后的最小生成树,最后输 ...

  4. HDU 2489 Minimal Ratio Tree 最小生成树+DFS

    Minimal Ratio Tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  5. 【BZOJ3551】[ONTAK2010]Peaks加强版 最小生成树+DFS序+主席树

    [BZOJ3545][ONTAK2010]Peaks Description 在Bytemountains有N座山峰,每座山峰有他的高度h_i.有些山峰之间有双向道路相连,共M条路径,每条路径有一个困 ...

  6. BZOJ1016:[JSOI2008]最小生成树计数(最小生成树,DFS)

    Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...

  7. $bzoj1016-JSOI2008$ 最小生成树计数 最小生成树 $dfs/matrix-tree$定理

    题面描述 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的).由于不同的 ...

  8. HDU 4081 Peach Blossom Spring (最小生成树+dfs)

    题意:给定一个 n 个点和相应的权值,要求你用 n-1 条边连接起来,其中一条边是魔法边,不用任何费用,其他的边是长度,求该魔法边的两端的权值与其他边费用的尽量大. 析:先求出最小生成树,然后再枚举每 ...

  9. cf Inverse the Problem (最小生成树+DFS)

    题意: N个点.N行N列d[i][j]. d[i][j]:结点i到结点j的距离. 问这N个点是否可能是一棵树.是输出YES,否则输出NO. 思路: 假设这个完全图是由一棵树得来的,则我们对这个完全图求 ...

随机推荐

  1. caffe2学习

    https://www.jianshu.com/p/50bf3bd4e3d0 知乎专栏 https://zhuanlan.zhihu.com/kingbob

  2. Draw your Next App Idea with Ink to Code

    Imagine that you’ve just been struck by inspiration for your next great app. You might start by jott ...

  3. 当页面是动态时 如果后台存储id可以通过查询后台方式获取对象;当后台没有存储时候 只有通过前端标记了 例如标记数量为10 我们根据传递过来的10循环取值

    当页面是动态时 如果后台存储id可以通过查询后台方式获取对象;当后台没有存储时候 只有通过前端标记了 例如标记数量为10 我们根据传递过来的10循环取值

  4. YUV格式与RGB格式

    YUV420介绍: YUV420格式是指,每个像素都保留一个Y(亮度)分量,而在水平方向上,不是每行都取U和V分量,而是一行只取U分量,则其接着一行就只取V分量,以此重复(即4:2:0, 4:0:2, ...

  5. 第四十天 并发编程之io模型

    一.今日内容 1.网络IO的两个阶段 waitdata copydata 2阻塞IO模型 之前写的都是阻塞 无论多线程 多进程 还是 进程池 线程池 3.非阻塞IO模型 在非阻塞IO中 需要不断循环询 ...

  6. Game HDU - 3657(最小割)

    Game Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  7. CODEFORCES掉RATING记 #5

    ​ 比赛:Codeforces Round #429 (Div. 2) ​ 时间:2017.8.1晚 这次感觉状态不好,就去打div2了 ​ A:有\(26\)种颜色的气球,每种的数量不一样,你要把这 ...

  8. Angular、React.js 和Node.js到底选谁?

    为了工作,程序员选择正确的框架和库来构建应用程序是至关重要的,这也就是为什么Angular和React之间有着太多的争议.Node.js的出现,让这场战争变得更加复杂,虽然有选择权通常是一件很棒的事情 ...

  9. 【BZOJ3165】[HEOI2013]Segment(李超线段树)

    [BZOJ3165][HEOI2013]Segment(李超线段树) 题面 BZOJ 洛谷 题解 似乎还是模板题QwQ #include<iostream> #include<cst ...

  10. 「SPOJ6340」「BZOJ1939」ZUMA - ZUMA【记忆化搜索】

    题目链接 [洛谷传送门] 题解 \(f[i][j][k]\)表示在消除了\((i,j)\),在后面加上了\(k\)个珠子的总的珠子数. 考虑三种决策:(题目给出的\(k\)在下文表示成\(K\)) 决 ...