0.

多元分析之聚类分析。

聚类分析是一种定量方法,从数据的角度,对样本或指标进行分类,进而进行更好的分析。

分为Q型聚类和R型聚类

1.

Q型聚类分析是对样本进行分类。有若干样本,我们把这些样本分成几类,每一类中的样本之间是“相似”的。

1)样本的相似性度量

样本之间的距离来描述样本之间的相似性。

常用的有绝对值距离、欧氏距离。使用欧氏距离必须标准化处理,但避免不了变量的多重相关性。

解决:使用马氏距离( Mahalanobis)。

式子中,x、y是来自总体Z两个样本(向量)。∑是Z的协方差矩阵。

2)类与类之间的相似性度量

如何衡量两个类之间的相似度。

常用的有:

最短距离法:两类中最近两点之间的距离。

最长距离法:两类中最远两点之间的距离。

重心法:两类数据重心的距离。

类平均法:两类所有两两点之间距离的平均。

离差平方和法:

3)Q型聚类分析以及实现

假设有w1,w2,w3…w7这些样本点,Q型聚类就是完成下图:

图中,f坐标代表“平台高度”,实际上是距离值。相同平台高度下各自分为两类。

如若分成3类,则在f3高度下,分为{w7},{w6,w5,w4},{w3,w2,w1}三类。

Q型聚类步骤:

  • 1 )计算n个样本点两两之间的距离dij ,记为矩阵D = (dij)(n*n);
  • 2)首先构造n个类,每一个类中只包含一个样本点,每一类的平台高度均为零
  • 3)合并距离近的两类为新类,并且以这两类间的距离值作为聚类图中的平台高 度;
  • 4)计算新类与当前各类的距离,若类的个数已经等于 1,转入步骤 5),否则,回 到步骤 3);
  • 5)画聚类图;
  • 6)决定类的个数和类。

4) MATLAB实现Q型聚类分析

相关MATLAB函数如下,需要查询下面。

5)一个使用例子:

解决:

 clc,clear
a = [,;,;,;,;,];
y = pdist(a,'cityblock') %计算绝对值距离
yc = squareform(y);
z = linkage(y) %最短距离法产生聚类树 [h,t] = dendrogram(z) %画聚类图命令
T = cluster(z,'maxclust',) %把对象划分为3类
for i = :
tm = find(T == i);%返回第i类对象
tm = reshape(tm,,length(tm));%编程行向量
fprintf('第%d类对象有%s\n',i,int2str(tm));
end

聚类图如下:

产生聚类树的z = linkage(y)得到:

这是一个(m-1)*3的矩阵,m是样例数。

1和2连接,平台高度是1;1和2连接后,新样例做第6点(m+j)。

3和4连接,平台高度是2;做第7点。

6和7连接,平台高度3;做第8点。

5和8连接。

若分成三类,打印结果如下:

3.

R型聚类。

R型聚类是更常用的。影响指标有若干,但这些影响因素(自变量)之间可能有相关性,把比较相关的聚成一类,只选用其中的一个因素来代表该类,从而对问题做出简化。

Q与R的对比:

Q是对样本进行聚类,通过样本之间的距离,结果是把各个样本分堆。

R是要最自变量进行聚类,通过自变量之间的相关系数(这个计算是根据样本计算的),进而对自变量之间的相关性做出分析,相关性大的自变量分在一类,结果是把自变量分堆。

1) 样本之间的距离

采用取Q型相同的方法。

2) 两类之间的距离

r为相关系数。这些操作都是基于相关系数的。

3)具体例子:

计算如下:

 clc,clear
a = textread('ch.txt')
d = - abs(a); %相关系数转距离
d = tril(d); %提出d矩阵的下三角部分
b = nonzeros(d);%去掉d的0
b = b';
z = linkage(b,'complete') %最大距离,产生聚类树
y = cluster(z,'maxclust',) %变量分为2类
ind1 = find(y == );
ind1 = ind1'
ind2 = find(y == );
ind2 = ind2'
dendrogram(z) %画聚类图

产生聚类图如下:

通过聚类图,可以看出,人体的变量大体可以分为两类:

一类反映人高、矮的变量, 如上体长,手臂长,前腰节高,后腰节高,总体长,身高,下体长;

另一类是反映人体 胖瘦的变量,如胸围,颈围,总肩围,总胸宽,后背宽,腰围,臀围。

【数学建模】day09-聚类分析的更多相关文章

  1. Python数学建模-01.新手必读

    Python 完全可以满足数学建模的需要. Python 是数学建模的最佳选择之一,而且在其它工作中也无所不能. 『Python 数学建模 @ Youcans』带你从数模小白成为国赛达人. 1. 数学 ...

  2. Python数学建模-02.数据导入

    数据导入是所有数模编程的第一步,比你想象的更重要. 先要学会一种未必最佳,但是通用.安全.简单.好学的方法. 『Python 数学建模 @ Youcans』带你从数模小白成为国赛达人. 1. 数据导入 ...

  3. Python小白的数学建模课-A1.2021年数维杯C题(运动会优化比赛模式探索)探讨

    Python小白的数学建模课 A1-2021年数维杯C题(运动会优化比赛模式探索)探讨. 运动会优化比赛模式问题,是公平分配问题 『Python小白的数学建模课 @ Youcans』带你从数模小白成为 ...

  4. Python小白的数学建模课-03.线性规划

    线性规划是很多数模培训讲的第一个算法,算法很简单,思想很深刻. 要通过线性规划问题,理解如何学习数学建模.如何选择编程算法. 『Python小白的数学建模课 @ Youcans』带你从数模小白成为国赛 ...

  5. Python小白的数学建模课-05.0-1规划

    0-1 规划不仅是数模竞赛中的常见题型,也具有重要的现实意义. 双十一促销中网购平台要求二选一,就是互斥的决策问题,可以用 0-1规划建模. 小白学习 0-1 规划,首先要学会识别 0-1规划,学习将 ...

  6. Python小白的数学建模课-A3.12 个新冠疫情数模竞赛赛题与点评

    新冠疫情深刻和全面地影响着社会和生活,已经成为数学建模竞赛的背景帝. 本文收集了与新冠疫情相关的的数学建模竞赛赛题,供大家参考,欢迎收藏关注. 『Python小白的数学建模课 @ Youcans』带你 ...

  7. python 版 mldivide matlab 反除(左除)《数学建模算法与程序》Python笔记

    今天在阅读数学建模的时候看到了差分那章 其中有一个用matlab求线性的代码,这里我贴出来 这里我送上 Python代码 In [39]: import numpy as np ...: from s ...

  8. 在数学建模中学MATLAB

    为期三周的数学建模国赛培训昨天正式结束了,还是有一定的收获的,尤其是在MATLAB的使用上. 1. 一些MATLAB的基础性东西: 元胞数组的使用:http://blog.csdn.net/z1137 ...

  9. BITED数学建模七日谈之七:临近比赛时的准备工作

    经过前面六天的文章分享,相信大家对数学模型的相关准备.学习都有了更新的认识,希望大家能从中有所收获,以便更高效地准备比赛和学习数学模型,本文是数学建模经验谈的最后一天:临近比赛的准备工作,希望在临近比 ...

  10. BITED数学建模七日谈之六:组队建议和比赛流程建议

    今天进入数学建模经验谈第六天:组队建议和比赛流程建议 数学模型的组队非常重要,三个人的团队一定要有分工明确而且互有合作,三个人都有其各自的特长,这样在某方面的问题的处理上才会保持高效率. 三个人的分工 ...

随机推荐

  1. Spark运行模式:cluster与client

    When run SparkSubmit --class [mainClass], SparkSubmit will call a childMainClass which is 1. client ...

  2. EntityFramework Core并发导致显式插入主键问题

    前言 之前讨论过EntityFramework Core中并发问题,按照官网所给并发冲突解决方案以为没有什么问题,但是在做单元测试时发现too young,too simple,下面我们一起来看看. ...

  3. ML.NET 示例:回归之价格预测

    写在前面 准备近期将微软的machinelearning-samples翻译成中文,水平有限,如有错漏,请大家多多指正. 如果有朋友对此感兴趣,可以加入我:https://github.com/fei ...

  4. [翻译] ASP.NET Core 利用 Docker、ElasticSearch、Kibana 来记录日志

    原文: Logging with ElasticSearch, Kibana, ASP.NET Core and Docker 一步一步指导您使用 ElasticSearch, Kibana, ASP ...

  5. 我的2017&2018

    最近项目进入验收阶段,所以上班没那么忙碌了,但是怎么说呢,我可能天生是闲不住的主,觉得浑身不自在(我这样的人是不是特别不会享福),此处应该有个笑脸哈. 翻看了博客园好几个大牛写的技术文章,感慨大牛不愧 ...

  6. p67交换幺环为整环的充要条件

    如何理解并且证明这个定理?谢谢 (0)是素理想,也是就是说,只要ab∈(0)就有a∈(0)或者b∈(0) 这等价于说 ab=0就有a=0或b=0. 它这里给的证明是什么意思呢?它是利用了素理想的等价刻 ...

  7. Python_函数的初识、函数的返回值、函数的参数

    1.函数的初识 def关键字 空格 函数名(与变量名命名规则相同):英文冒号 函数体 执行函数:函数名+() 函数是以功能为导向的. def login(): pass def register(): ...

  8. MySQL左连接时 返回的记录条数 比 左边表 数量多

    在学MySQL的连接时,为了便于记忆,就将左连接 记做 最后结果的总记录数 和 进行左连接的左表的记录数相同,简单的说就是下面这个公式 count(table A left join table B) ...

  9. Git之项目使用

    现在最为盛行的版本控制器,非git莫属了, 那就看看在项目中我们是如何使用它的吧 一. 在已经存在秘钥对的情况下,我们需要在本地进行相关配置 git config --global user.name ...

  10. Oracle 用户管理与权限分配

    用户管理是系统管理员最基本的任务之一,用户想要连接数据库并且使用相应的系统资源就必须是系统的合法用户且具有对应的权限. 1 创建用户 default tablespace default_tables ...