uvaLive7303 Aquarium (kruskal)
题意:给R*C的房间,每个房间被左上-右下或右上-左下的墙分割为两个小房间,将分割移除有一定花费,问使所有小房间联通需要的最小花费
把每个房间分成左右(上下?)两个点,判一判,本来就联通的加零边,一个房间里的两个点间加花费的边,跑kruskal即可
#include<cstdio>
#include<cstring>
#include<algorithm> using namespace std;
const int maxN=; typedef struct{
int a,b,l;
}Edge; Edge eg[maxN*maxN];
bool stage[maxN][maxN]; //true->\ false->/
int bcj[maxN*maxN*]; //(i-1)*C+j
int T,R,C; bool cmp(Edge a,Edge b){
return a.l<b.l;
} int getf(int i){
return bcj[i]==i?i:bcj[i]=getf(bcj[i]);
} void add(int a,int b){ //a->b
bcj[getf(a)]=getf(b);
} int main(){
int t,i,j,k,ind,a,b,num,ans;
char cr; scanf("%d",&T);
for(t=;t<=T;t++){
scanf("%d%d\n",&R,&C);
for(i=;i<=R;i++){
for(j=;j<=C;j++){
scanf("%c",&cr);
stage[i][j]=(cr=='\\');
}
if(i<R) scanf("\n");
}
ind=;
for(i=;i<=R;i++){
for(j=;j<=C;j++){
eg[ind].a=(i-)*C*+j*-;
eg[ind].b=(i-)*C*+j*;
scanf("%d",&eg[ind++].l);
}
}
for(i=;i<=R;i++){
ind=(i-)*C*;
bcj[ind+]=ind+;
bcj[ind+C*]=ind+C*;
for(j=;j<C;j++){
bcj[ind+j*]=ind+j*;
bcj[ind+j*+]=ind+j*;
}
}
for(i=;i<R;i++){
for(j=;j<=C;j++){
ind=(i-)*C*+j*;
a=stage[i][j]?ind-:ind;
b=stage[i+][j]?ind+C*:ind+C*-;
add(a,b);
}
}
sort(eg,eg+R*C,cmp); ans=;
for(i=;i<R*C;i++){
if(getf(eg[i].a)!=getf(eg[i].b)){
add(eg[i].a,eg[i].b);
ans+=eg[i].l;
}
}
printf("Case %d: %d\n",t,ans); }
}
uvaLive7303 Aquarium (kruskal)的更多相关文章
- UVALive-7303 Aquarium (最小生成树)
题目大意:在nxm的方格中,每一个1x1的小方格中都有一堵沿对角线的墙,并且每堵墙都有一个坚固程度,这些墙将nxm的方格分割成了若干个区域.现在要拆除一些墙,使其变成一个区域. 题目分析:将区域视作点 ...
- c/c++ 用克鲁斯卡尔(kruskal)算法构造最小生成树
c/c++ 用克鲁斯卡尔(kruskal)算法构造最小生成树 最小生成树(Minimum Cost Spanning Tree)的概念: 假设要在n个城市之间建立公路,则连通n个城市只需要n-1条线路 ...
- 最小生成树之克鲁斯卡尔(Kruskal)算法
学习最小生成树算法之前我们先来了解下 下面这些概念: 树(Tree):如果一个无向连通图中不存在回路,则这种图称为树. 生成树 (Spanning Tree):无向连通图G的一个子图如果是一颗包含G的 ...
- 克鲁斯卡尔(Kruskal)算法
概览 相比于普里姆算法(Prim算法),克鲁斯卡尔算法直接以边为目标去构建最小生成树.从按权值由小到大排好序的边集合{E}中逐个寻找权值最小的边来构建最小生成树,只要构建时,不会形成环路即可保证当边集 ...
- 最小生成树练习2(Kruskal)
两个BUG鸣翠柳,一行代码上西天... hdu4786 Fibonacci Tree(生成树)问能否用白边和黑边构成一棵生成树,并且白边数量是斐波那契数. 题解:分别优先加入白边和黑边,求出生成树能包 ...
- 最小生成树(Kruskal)
题目描述 如题,给出一个无向图,求出最小生成树,如果该图不连通,则输出orz 输入输出格式 输入格式: 第一行包含两个整数N.M,表示该图共有N个结点和M条无向边.(N<=5000,M<= ...
- 这是一篇每个人都能读懂的最小生成树文章(Kruskal)
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是算法和数据结构专题的第19篇文章,我们一起来看看最小生成树. 我们先不讲算法的原理,也不讲一些七七八八的概念,因为对于初学者来说,看到 ...
- 查找最小生成树:克鲁斯克尔算法(Kruskal)算法
一.算法介绍 Kruskal算法是一种用来查找最小生成树的算法,由Joseph Kruskal在1956年发表.用来解决同样问题的还有Prim算法和Boruvka算法等.三种算法都是贪心算法的应用.和 ...
- 最小生成树--克鲁斯卡尔算法(Kruskal)
按照惯例,接下来是本篇目录: $1 什么是最小生成树? $2 什么是克鲁斯卡尔算法? $3 克鲁斯卡尔算法的例题 摘要:本片讲的是最小生成树中的玄学算法--克鲁斯卡尔算法,然后就没有然后了. $1 什 ...
随机推荐
- Linux sudoers
xxx is not in the sudoers file.This incident will be reported.的解决方法 - xiaochaoyxc - 博客园http://www.cn ...
- [转帖]oracle改版sql server问题点汇总
https://www.cnblogs.com/zhangdk/p/oracle_sqlserver.html 只记得 最开始的时候看过 没有具体的了解里面的特点 原作者总结的很好 留下来 以后说不定 ...
- OpenCV__type()返回的数字
OpenCV中的类型以宏定义的形式给出 type_c.h中片段 #define CV_CN_MAX 512 #define CV_CN_SHIFT 3 #define CV_DEPTH_MAX (1 ...
- 【学亮IT手记】angularJS+select2多选下拉框实例
永远保持对大部分知识的好奇心,学习从不枯燥,也没有被逼学习一说,乐此不疲才是该有的心态和境界!!! 引入相关js库: html部分代码: angularJS定义数据源变量:
- 配置Google Gmail分类和过滤器
简单的记两笔. 首先点击右上角的⚙️里面选择settings. 选择Filters and Blocked Addresses 在这个页面可以选择 create a new filter创建一个新的过 ...
- 压测工具使用(vegeta)
一.压测工具vegeta 1.介绍 Vegeta 是一个用 Go 语言编写的多功能的 HTTP 负载测试工具,它提供了命令行工具和一个开发库. 官方地址:https://github.com/tsen ...
- tornado web框架简介
https://www.cnblogs.com/aylin/p/5702994.html
- react用构造函数创建组件
有两种方法,一种是通过构造函数创建,一种是通过class创建 1.构造函数创建组件 用function+组件名的方式创建,创建好了,在render里面以标签的形式一丢就可以啦!但是这种方式必须要ret ...
- PC平台主要SIMD扩展发展简史
Single Instruction Multiple Data,简称SIMD.SIMD描述的是微处理器中单条指令能完成对数据的并行处理.SIMD所使用的是特殊的寄存器,一个寄存器上存储有多个数据,在 ...
- nodejs eggjs框架 爬虫 readhub.me
最近做了一款 高仿ReadHub小程序 微信小程序 canvas 自动适配 自动换行,保存图片分享到朋友圈 https://gitee.com/richard1015/News 具体代码已被开源, ...