下午打了湘潭邀请赛,好像缓解了一下北京网络赛超强的自闭感。补一下这个图论题。(补了很久)

题意:给你一颗n节点的树,有m个操作,每次向xi和lca(xi,yi)连边,然后每次zi就是对于新的图在删除每一个点后连通块个数的异或和。然后求的是m次操作后x,y的值。

题解:看这个问题看了好久我都完全无从下手,题意也理解了半天,只知道有环prprpr,然后和x到lca这条链上的点有关系。但是感觉怎么都会T,就只能暴力更新。然后就看别人的题解,并且打开了画图软件,首先,对于一颗树每个点删除后产生的联通块个数就是它的入度和出度的和。然后异或一下就好。也就是和它度数有关。然后对于每次加的那条边,可以发现这条边的两个点的删除后个数不变,而那条链上的其余点联通块个数减减。然后就是最关键的,对于每条边,最多只会更新一次,因为成环后,新加的边所形成的新环,如果更新的链也通过之前存在的环走过的链,此时对于这条链上的点是无影响的,因为原来的这条边已经被减减过了。画图是这样,写博客中间又仔细想了一想,应该是这样理解的?也就是我们可以跳过这些环,缩环为点,用并查集缩环???第一次听说,然后写法上挺有讲究的吧,它可能并查集跳到的点会超过lca,所以要用深度判断一下。如果写的不完全对,以后懂了来改好了

#include<bits/stdc++.h>
#define ll long long
#define pb push_back
#define _mp make_pair
#define ldb long double
using namespace std;
const int maxn=5005;
inline ll read()
{
ll x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int lca[maxn][20];
int bcg[maxn],depth[maxn];
int n,m,a,b,x,y;
int fir[maxn],nxt[maxn*2],to[maxn*2];
int du[maxn];
int cnt;
int ans;
void add_e(int x,int y)
{
++cnt;nxt[cnt]=fir[x];fir[x]=cnt;to[cnt]=y;
++cnt;nxt[cnt]=fir[y];fir[y]=cnt;to[cnt]=x;
}
int findd(int x)
{
return bcg[x]==x?bcg[x]:bcg[x]=findd(bcg[x]);
}
int LCA(int x,int y)
{
if(depth[x]<depth[y])swap(x,y);
int dd=depth[x]-depth[y];
for(int i=18;i>=0;i--)
{
if(dd&(1<<i))x=lca[x][i];
}
if(x==y)return y;
for(int i=18;i>=0;i--)
{
if(lca[x][i]!=lca[y][i])
{
x=lca[x][i];
y=lca[y][i];
}
}
return lca[x][0];
}
void dfs(int x,int fa)
{
lca[x][0]=fa;
depth[x]=depth[fa]+1;
for(int i=fir[x];i;i=nxt[i])
{
int pp=to[i];
if(pp==fa)continue;
dfs(pp,x);
}
}
void lca_init()
{
dfs(1,0);
depth[0]=0;
for(int k=1;k<=18;k++)
{
for(int i=1;i<=n;i++)
{
lca[i][k]=lca[lca[i][k-1]][k-1];
}
}
}
void init()
{
memset(depth,0,sizeof(depth));
memset(lca,0,sizeof(lca));
for(int i=1;i<=n;i++)bcg[i]=i;
for(int i=1;i<=n;i++)du[i]=0;
cnt=0;
memset(fir,0,sizeof(fir));
}
void update(int x,int y)
{
x=findd(x);
if(depth[lca[x][0]]<=depth[y]||lca[x][0]==0)
{
return ;
}
ans=ans^du[lca[x][0]]^(--du[lca[x][0]]);
bcg[x]=lca[x][0];
update(lca[x][0],y);
}
int main()
{
while(~scanf("%d%d%d%d%d%d",&n,&m,&a,&b,&x,&y))
{
init();
int p,q;
for(int i=1;i<n;i++)
{
scanf("%d%d",&p,&q);
p++,q++;
add_e(p,q);
du[p]++,du[q]++;
}
lca_init();
ans=0;
for(int i=1;i<=n;i++)
{
ans^=du[i];
}
for(int i=0;i<m;i++)
{
int nx=(a*x+b*y+ans)%n;
int ny=(b*x+a*y+ans)%n;
x=nx;
y=ny;
update(x+1,LCA(x+1,y+1));
}
printf("%d %d\n",x,y); }
}

  

HDU6280 From Tree to Graph的更多相关文章

  1. HDU 6280 From Tree to Graph(2018 湘潭邀请 E题,树的返祖边)

    其实打返祖边就相当于$x$到祖先这一段点(不包括两端)答案都要减$1$. 然后每个点最多减$1$次$1$. #include <bits/stdc++.h> using namespace ...

  2. 湘潭邀请赛 2018 E From Tree to Graph

    题意: 给出一棵树以及m,a,b,x0,y0.之后加m条边{(x1,LCA(x1,y1)),(x2,LCA(x2,y2))...(xm,LCA(xm,ym))}.定义z = f(0)^f(1)^... ...

  3. Clone Graph leetcode java(DFS and BFS 基础)

    题目: Clone an undirected graph. Each node in the graph contains a label and a list of its neighbors. ...

  4. Graph图总结

    将COMP20003中关于Graph的内容进行总结,内容来自COMP20003,中文术语并不准确,以英文为准. Graph G = {V, E} 顶Vertices V: can contain in ...

  5. CF375D Tree and Queries

    题意翻译 给出一棵 n 个结点的树,每个结点有一个颜色 c i . 询问 q 次,每次询问以 v 结点为根的子树中,出现次数 ≥k 的颜色有多少种.树的根节点是1. 感谢@elijahqi 提供的翻译 ...

  6. UVALive 6910 Cutting Tree 并查集

    Cutting Tree 题目连接: https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8& ...

  7. CodeForces - 963B Destruction of a Tree (dfs+思维题)

    B. Destruction of a Tree time limit per test 1 second memory limit per test 256 megabytes input stan ...

  8. codeforces 963B Destruction of a Tree

    B. Destruction of a Tree time limit per test 1 second memory limit per test 256 megabytes input stan ...

  9. 963B:Destruction of a Tree

    You are given a tree (a graph with n vertices and n - 1 edges in which it's possible to reach any ve ...

随机推荐

  1. sys模块进度条玩法笔记

    #! /user/bin/env python# -*- encoding:utf-8 -*-import time,sys for i in range(31): sys.stdout.write( ...

  2. Oracle 表空间不足引起的问题及解决方法

    -- 1 向数据库导入数据时报了ORA-01653: unable to extend table错误,网上查了下原因是由于表空间不足引起的: 查询表空间使用情况语句 select a.tablesp ...

  3. Oracle 中sql文件的导入导出

    导出 一般导入的时候我用的是命令行 imp c##zs/@orcl fromuser=c##zs touser=c##zs file=D:\java\.dmp ignore=y c##zs 是创建的用 ...

  4. Centos6.8 安装git

    1.下载安装包 wget https://mirrors.edge.kernel.org/pub/software/scm/git/git-2.8.0.tar.gz 2.安装依赖 sudo yum - ...

  5. python数据结构与算法第十四天【二分查找】

    1.二分查找的原理 对于已经排序的列表进行最快速度的查找 2. 代码实现 (1)递归实现 def binary_search(alist, item): if len(alist) == 0: ret ...

  6. ubuntu 有些软件中不能输入中文

    如果Ubuntu设定的是英文语言,在各种软件例如wps等中很有可能就不能输入中文.这种情况,我们的解决方案是,把中文输入法加到软件的启动文件中,如何加呢?把下面内容加进去就可以解决: export X ...

  7. OSError: mysql_config not found

    使用Python3开发一个管理平台,用MySQL数据库存放元数据.使用pip安装mysqlclient模块时出现“OSError: mysql_config not found”错误. 解决: # a ...

  8. Express学习 ------模版引擎(handlebars)

    Handlebars一款js模版引擎,我们在做客户端开发的时候,也可能已经使用过.它语法比较简单,和我们平常写的html 一样,只不过html 中可以加入handlebars 表达式. handleb ...

  9. Ontology

    本体网络(Ontology) 新一代分布式信任链网 在开始了解项目之前,让我们先看一段“第一财经”频道关于“本体网络”的介绍: 项目介绍 1摘要 类型  提供不同分布式应用场景的开放基础模块,构建跨链 ...

  10. BZOJ3812 主旋律(状压dp+容斥原理)

    设f[S]为S点集是SCC的方案数.考虑通过去掉不合法方案转移.可以枚举入度为0的SCC所含点集S',这样显然S^S'内部的边和由S'连向S^S'的边删还是不删任选.但是这样无法保证S'包含所有入度为 ...