参考:https://pytorch-cn.readthedocs.io/zh/latest/torchvision/torchvision-datasets/

torchvision.datasets

Datasets 拥有以下API:

  • __getitem__
  • __len__

Datasets都是 torch.utils.data.Dataset的子类,所以,他们也可以通过torch.utils.data.DataLoader使用多线程(python的多进程)。

举例说明:

torch.utils.data.DataLoader(coco_cap, batch_size=args.batchSize, shuffle=True, num_workers=args.nThreads)

在构造函数中,不同的数据集直接的构造函数会有些许不同,但是他们共同拥有 keyword 参数。

  • transform: 一个函数,原始图片作为输入,返回一个转换后的图片。
  • target_transform - 一个函数,输入为target,输出对其的转换。例子,输入的是图片标注的string,输出为word的索引。

ImageFolder

一个通用的数据加载器,数据集中的数据以以下方式组织

root/dog/xxx.png
root/dog/xxy.png
root/dog/xxz.png root/cat/.png
root/cat/nsdf3.png
root/cat/asd932_.png

既其默认你的数据集已经自觉按照要分配的类型分成了不同的文件夹,一种类型的文件夹下面只存放一种类型的图片

运行命令为:

import torchvision.datasets as dset
dset.ImageFolder(root="root folder path", [transform, target_transform])
  • root : 指定图片存储的路径,在下面的例子中是'./data/dogcat_2'
  • transform: 一个函数,原始图片作为输入,返回一个转换后的图片。
  • target_transform - 一个函数,输入为target,输出对其的转换。例子,输入的是图片标注的string,输出为word的索引。

有以下成员变量:

  • self.classes - 用一个list保存 类名
  • self.class_to_idx - 类名对应的 索引
  • self.imgs - 保存(img-path, class) tuple的list
即后面可以通过查看返回的数据集对象来查看相应的值,下面举例说明:
 
图片为:

可见分成了cat和dog两类

import torchvision.datasets as dset
dataset = dset.ImageFolder('./data/dogcat_2') #没有transform,先看看取得的原始图像数据
print(dataset.classes) #根据分的文件夹的名字来确定的类别
print(dataset.class_to_idx) #按顺序为这些类别定义索引为0,...
print(dataset.imgs) #返回从所有文件夹中得到的图片的路径以及其类别

返回:

['cat', 'dog']
{'cat': , 'dog': }
[('./data/dogcat_2/cat/cat.12484.jpg', ), ('./data/dogcat_2/cat/cat.12485.jpg', ), ('./data/dogcat_2/cat/cat.12486.jpg', ), ('./data/dogcat_2/cat/cat.12487.jpg', ), ('./data/dogcat_2/dog/dog.12496.jpg', ), ('./data/dogcat_2/dog/dog.12497.jpg', ), ('./data/dogcat_2/dog/dog.12498.jpg', ), ('./data/dogcat_2/dog/dog.12499.jpg', )]

如果在数据下面又添加了一个类型'others',那么访问类型的时候返回的就是:

['cat', 'dog', 'others']
{'cat': , 'dog': , 'others': }

查看得到的图片数据:

#从返回结果可见得到的数据仍是PIL Image对象
print(dataset[])
print(dataset[][])
print(dataset[][]) #得到的是类别0,即cat

返回:

(<PIL.Image.Image image mode=RGB size=497x500 at 0x11D99A9B0>, )
<PIL.Image.Image image mode=RGB size=497x500 at 0x11DD24278>

然后定义一个对数据进行处理的transform:

#可以看出来此时得到的图片数据已经是处理过后的tensor数据了
print(dataset[][])
print(dataset[][].size()) #大小也是经过设定后的大小224
print(dataset[][]) #得到的是类别0,即cat

返回:

tensor([[[-0.7412, -0.7490, -0.7725,  ...,  0.3176,  0.3412,  0.3725],
[-0.7333, -0.7412, -0.7882, ..., 0.3255, 0.3647, 0.4039],
[-0.7098, -0.7569, -0.8039, ..., 0.3255, 0.3725, 0.4039],
...,
[ 0.3961, 0.3961, 0.4039, ..., 0.2627, 0.2627, 0.2549],
[ 0.4196, 0.4039, 0.4118, ..., 0.2549, 0.2392, 0.2314],
[ 0.4275, 0.4275, 0.4431, ..., 0.2314, 0.2314, 0.2235]], [[-0.7412, -0.7490, -0.7725, ..., 0.3882, 0.3725, 0.3569],
[-0.7333, -0.7412, -0.7882, ..., 0.3961, 0.3961, 0.3882],
[-0.7098, -0.7569, -0.8039, ..., 0.3882, 0.4039, 0.3882],
...,
[ 0.0431, 0.0510, 0.0667, ..., -0.0824, -0.0824, -0.0902],
[ 0.0510, 0.0431, 0.0588, ..., -0.0824, -0.1059, -0.1137],
[ 0.0353, 0.0353, 0.0510, ..., -0.0902, -0.1059, -0.1216]], [[-0.8353, -0.8431, -0.8667, ..., 0.3255, 0.3255, 0.3255],
[-0.8196, -0.8275, -0.8824, ..., 0.3333, 0.3490, 0.3569],
[-0.7804, -0.8353, -0.8667, ..., 0.3333, 0.3569, 0.3569],
...,
[-0.2863, -0.2784, -0.2627, ..., -0.3569, -0.3569, -0.3647],
[-0.2549, -0.2706, -0.2549, ..., -0.3569, -0.3804, -0.3882],
[-0.2235, -0.2471, -0.2392, ..., -0.3569, -0.3804, -0.4039]]])
torch.Size([, , ])
 
 
 
 
 

pytorch torchvision.ImageFolder的使用的更多相关文章

  1. LeNet-5 pytorch+torchvision+visdom

    # ====================LeNet-5_main.py=============== # pytorch+torchvision+visdom # -*- coding: utf- ...

  2. Linux服务器配置GPU版本的pytorch Torchvision TensorFlow

    最近在Linux服务器上配置项目,项目需要使用GPU版本的pytorch和TensorFlow,而且该项目内会同时使用TensorFlow的GPU和CPU. 在服务器上装环境,如果重新开始,就需要下载 ...

  3. 云服务器搭建anaconda pytorch torchvision

    (因为在普通用户上安装有些权限问题安装出错,所以我在root用户下相对容易安装,但是anaconda官网说可以直接在普通用户下安装,不过,在root下安装,其他用户也是能用的. 访问Anaconda官 ...

  4. Pytorch Torchvision Transform

    Torchvision.Transforms Transforms包含常用图像转换操作.可以使用Compose将它们链接在一起. 此外,还有torchvision.transforms.functio ...

  5. pytorch torchvision对图像进行变换

    class torchvision.transforms.Compose(转换) 多个将transform组合起来使用. class torchvision.transforms.CenterCrop ...

  6. pytorch ImageFolder的覆写

    在为数据分类训练分类器的时候,比如猫狗分类时,我们经常会使用pytorch的ImageFolder: CLASS torchvision.datasets.ImageFolder(root, tran ...

  7. PyTorch使用总览

    PyTorch使用总览 https://blog.csdn.net/u014380165/article/details/79222243 深度学习框架训练模型时的代码主要包含数据读取.网络构建和其他 ...

  8. Linux安装pytorch的具体过程以及其中出现问题的解决办法

    1.安装Anaconda 安装步骤参考了官网的说明:https://docs.anaconda.com/anaconda/install/linux.html 具体步骤如下: 首先,在官网下载地址 h ...

  9. docker挂载NVIDIA显卡运行pytorch

    本文为作者原创,转载请注明出处(http://www.cnblogs.com/mar-q/)by 负赑屃   写在前面: 请参考之前的文章安装好CentOS.NVIDIA相关驱动及软件.docker及 ...

随机推荐

  1. idea代码快捷

    idea代码快捷:main函数快捷:psvmfor循环快捷:fori.foreach系统输出快捷:sout.serr 更多的提示可以按Ctrl+ J 进行查看 更改快捷:File-->Setti ...

  2. easyUI按钮图表对照大全

    easyUI图标与对照类的对应关系:

  3. Suricata规则编写——常用关键字

    本篇转载自:http://blog.csdn.net/wuyangbotianshi/article/details/44775181 1.简介 现在的NIDS领域snort一枝独秀,而suricat ...

  4. Link Between SAP SD, MM & FI

    Link Between SAP SD, MM & FI 1. In SAP you will always get integration with other modules. SD wi ...

  5. leaflet计算多边形面积

    上一篇介绍了使用leaflet绘制圆形,那如何计算圆形的面积呢? 1.使用数学公式计算,绘制好圆形后,获取中心点以及半径即可 2.使用第三方工具计算,如turf.js. 这里turf的area方法入参 ...

  6. Nginx 配置下载附件让浏览器提示用户是否保存

    Nginx配置下载附件让浏览器提示用户是否保存   by:授客  QQ:1033553122   测试环境 nginx-1.10.0 问题描述: 前端页面,IE11浏览器下请求下载附件模板,针对xls ...

  7. (网页)java数组去重总结(转)

    转自CSDN: 1.背景 根据不同的业务逻辑,经常会遇到数组中存在多个重复元素的场合,总结了下数组的排序,留个记录. 2.实现方法   总结了四种方法,接下来进行展示 1.方法一 //数组去重方法一 ...

  8. 记一次zookeeper单机伪集群分布

    zookeeper的各版本(历史版本)下载地址:http://apache.org/dist/zookeeper/ 环境>:linux 下载的zookeeper解压成3个

  9. [20181124]关于降序索引问题2.txt

    [20181124]关于降序索引问题2.txt --//链接:blog.itpub.net/267265/viewspace-2221425/,探讨降序索引中索引的键值.--//实际上使用函数sys_ ...

  10. HTML表单 CSS样式

    1.HTML表单 <body rightmargin="50" leftmargin="50" background="未标题-1.jpg&qu ...