Sometimes the aggregate functions provided by Spark are not adequate, so Spark has a provision of accepting custom user defined aggregate functions. Before diving into code lets first understand some of the methods of class UserDefinedAggregateFunction.

1. inputSchema()

In this method you need to define a StructType that represents the input arguments of this aggregate function.

2. bufferSchema()

In this method you need to define a StructType that represents values in the aggregation buffer. This schema is used to hold the aggregate function value at the time of processing.

3. dataType()

The DataType of the returned value of this aggregate function

4. initialize(MutableAggregationBuffer buffer)

Whenever your “key” changes this method is invoked. You can use this method to reinitalise your variable.

5. evaluate(Row buffer)

This method calculates the final value by refering the aggregation buffer.

6. update(MutableAggregationBuffer buffer, Row input)

This method is used to update the aggregation buffer, it is invoked every time a new input comes for similar key

7. merge(MutableAggregationBuffer buffer, Row input)

This method is used to merge output of two different aggregation buffer.

Below is the pictorial representation of how the methods work in spark.Assumption is, there are 2 aggregation buffers for your task

Lets see how we can write a UDAF that accepts multiple values as input and returns multiple values as output.

My input file is a .txt file which contains 3 columns city, female count and male count.We need to compute total population and the dominant population of each city.

CITIES.TXT

Nashik 40 50
Mumbai 50 60
Pune 70 80
Nashik 40 50
Mumbai 50 60
Pune 170 80

Expected output is as below

+--------+--------+--------+
| city   |Dominant| Total  |
+--------+--------+--------+
| Mumbai | Male   | 220    |
| Pune   | Female | 400    |
| Nashik | Male   | 180    |
+--------+--------+--------+

Now lets write a UDAF class that extends UserDefinedAggregateFunction class, I have provided the required comments in the code below.

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.expressions.MutableAggregationBuffer;
import org.apache.spark.sql.expressions.UserDefinedAggregateFunction;
import org.apache.spark.sql.types.DataType;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType; public class SparkUDAF extends UserDefinedAggregateFunction
{
private StructType inputSchema;
private StructType bufferSchema;
private DataType returnDataType =
DataTypes.createMapType(DataTypes.StringType, DataTypes.StringType);
MutableAggregationBuffer mutableBuffer; public SparkUDAF()
{
//inputSchema : This UDAF can accept 2 inputs which are of type Integer
List<StructField> inputFields = new ArrayList<StructField>();
StructField inputStructField1 = DataTypes.createStructField(“femaleCount”,DataTypes.IntegerType, true);
inputFields.add(inputStructField1);
StructField inputStructField2 = DataTypes.createStructField(“maleCount”,DataTypes.IntegerType, true);
inputFields.add(inputStructField2);
inputSchema = DataTypes.createStructType(inputFields); //BufferSchema : This UDAF can hold calculated data in below mentioned buffers
List<StructField> bufferFields = new ArrayList<StructField>();
StructField bufferStructField1 = DataTypes.createStructField(“totalCount”,DataTypes.IntegerType, true);
bufferFields.add(bufferStructField1);
StructField bufferStructField2 = DataTypes.createStructField(“femaleCount”,DataTypes.IntegerType, true);
bufferFields.add(bufferStructField2);
StructField bufferStructField3 = DataTypes.createStructField(“maleCount”,DataTypes.IntegerType, true);
bufferFields.add(bufferStructField3);
StructField bufferStructField4 = DataTypes.createStructField(“outputMap”,DataTypes.createMapType(DataTypes.StringType, DataTypes.StringType), true);
bufferFields.add(bufferStructField4);
bufferSchema = DataTypes.createStructType(bufferFields);
} /**
* This method determines which bufferSchema will be used
*/
@Override
public StructType bufferSchema() { return bufferSchema;
} /**
* This method determines the return type of this UDAF
*/
@Override
public DataType dataType() {
return returnDataType;
} /**
* Returns true iff this function is deterministic, i.e. given the same input, always return the same output.
*/
@Override
public boolean deterministic() {
return true;
} /**
* This method will re-initialize the variables to 0 on change of city name
*/
@Override
public void initialize(MutableAggregationBuffer buffer) {
buffer.update(, );
buffer.update(, );
buffer.update(, );
mutableBuffer = buffer;
} /**
* This method is used to increment the count for each city
*/
@Override
public void update(MutableAggregationBuffer buffer, Row input) {
buffer.update(, buffer.getInt() + input.getInt() + input.getInt());
buffer.update(, input.getInt());
buffer.update(, input.getInt());
} /**
* This method will be used to merge data of two buffers
*/
@Override
public void merge(MutableAggregationBuffer buffer, Row input) { buffer.update(, buffer.getInt() + input.getInt());
buffer.update(, buffer.getInt() + input.getInt());
buffer.update(, buffer.getInt() + input.getInt()); } /**
* This method calculates the final value by referring the aggregation buffer
*/
@Override
public Object evaluate(Row buffer) {
//In this method we are preparing a final map that will be returned as output
Map<String,String> op = new HashMap<String,String>();
op.put(“Total”, “” + mutableBuffer.getInt());
op.put(“dominant”, “Male”);
if(buffer.getInt() > mutableBuffer.getInt())
{
op.put(“dominant”, “Female”);
}
mutableBuffer.update(,op); return buffer.getMap();
}
/**
* This method will determine the input schema of this UDAF
*/
@Override
public StructType inputSchema() { return inputSchema;
} } Now lets see how we can access this UDAF using our spark code import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.StringTokenizer; import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.hive.HiveContext;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
public class TestDemo {
public static void main (String args[])
{
//Set up sparkContext and SQLContext
SparkConf conf = new SparkConf().setAppName(“udaf”).setMaster(“local”);
JavaSparkContext sc = new JavaSparkContext(conf);
SQLContext sqlContext = new org.apache.spark.sql.SQLContext(sc); //create Row RDD
JavaRDD<String> citiesRdd = sc.textFile(“cities.txt”);
JavaRDD<Row> rowRdd = citiesRdd.map(new Function<String, Row>() {
public Row call(String line) throws Exception {
StringTokenizer st = new StringTokenizer(line,” “);
return RowFactory.create(st.nextToken().trim(),Integer.parseInt(st.nextToken().trim()),Integer.parseInt(st.nextToken().trim()));
}
}); //Create Struct Type
List<StructField> inputFields = new ArrayList<StructField>();
StructField inputStructField = DataTypes.createStructField(“city”,DataTypes.StringType, true);
inputFields.add(inputStructField);
StructField inputStructField2 = DataTypes.createStructField(“Female”,DataTypes.IntegerType, true);
inputFields.add(inputStructField2);
StructField inputStructField3 = DataTypes.createStructField(“Male”,DataTypes.IntegerType, true);
inputFields.add(inputStructField3);
StructType inputSchema = DataTypes.createStructType(inputFields); //Create Data Frame
DataFrame df = sqlContext.createDataFrame(rowRdd, inputSchema); //Register our Spark UDAF
SparkUDAF sparkUDAF = new SparkUDAF();
sqlContext.udf().register(“uf”,sparkUDAF); //Register dataframe as table
df.registerTempTable(“cities”); //Run query
sqlContext.sql(“SELECT city , count[‘dominant’] as Dominant, count[‘Total’] as Total from(select city, uf(Female,Male) as count from cities group by (city)) temp”).show(false); }
}

文章来自:https://blog.augmentiq.in/2016/08/05/spark-multiple-inputoutput-user-defined-aggregate-function-udaf-using-java/

转:Spark User Defined Aggregate Function (UDAF) using Java的更多相关文章

  1. Spark笔记之使用UDAF(User Defined Aggregate Function)

    一.UDAF简介 先解释一下什么是UDAF(User Defined Aggregate Function),即用户定义的聚合函数,聚合函数和普通函数的区别是什么呢,普通函数是接受一行输入产生一个输出 ...

  2. Spark SQL中UDF和UDAF

    转载自:https://blog.csdn.net/u012297062/article/details/52227909 UDF: User Defined Function,用户自定义的函数,函数 ...

  3. Spark Sql的UDF和UDAF函数

    Spark Sql提供了丰富的内置函数供猿友们使用,辣为何还要用户自定义函数呢?实际的业务场景可能很复杂,内置函数hold不住,所以spark sql提供了可扩展的内置函数接口:哥们,你的业务太变态了 ...

  4. 【理解】column must appear in the GROUP BY clause or be used in an aggregate function

    column "ms.xxx_time" must appear in the GROUP BY clause or be used in an aggregate functio ...

  5. invalid in the select list because it is not contained in either an aggregate function or the GROUP BY clause

    Column 'dbo.tbm_vie_View.ViewID' is invalid in the select list because it is not contained in either ...

  6. must appear in the GROUP BY clause or be used in an aggregate function

    今天在分组统计的时候pgsql报错 must appear in the GROUP BY clause or be used in an aggregate function,在mysql里面是可以 ...

  7. 解决spark程序报错:Caused by: java.util.concurrent.TimeoutException: Futures timed out after [300 seconds]

    报错信息: 09-05-2017 09:58:44 CST xxxx_job_1494294485570174 INFO - at org.apache.spark.sql.catalyst.erro ...

  8. spark算子之Aggregate

    Aggregate函数 一.源码定义 /** * Aggregate the elements of each partition, and then the results for all the ...

  9. Spark MLlib 之 aggregate和treeAggregate从原理到应用

    在阅读spark mllib源码的时候,发现一个出镜率很高的函数--aggregate和treeAggregate,比如matrix.columnSimilarities()中.为了好好理解这两个方法 ...

随机推荐

  1. Web Api 图片上传,在使用 Task.ContinueWith 变量无法赋值问题

    细谈 Web Api 图片上传,在使用 Task.ContinueWith 变量无法赋值问题的解决办法!   在使用Asp.Net Web Api 图片上传接口的时候,到网上找了一些个例子,但大多数找 ...

  2. 对student进行增删改

    drop package TechEd_pkg_Student; CREATE OR REPLACE PACKAGE TechEd_pkg_Student AS FUNCTION F_CREATE(p ...

  3. 10.25最后的模拟赛DAY1 answer

    QAQ太困了,大概说一下自己的思路: 其实这题很容易看错题目或是想错,就比如我个傻逼,一开始以为p+q一定等于n.... 咳咳...其实这题不用想太多,我们可以通过这n个字符串一个个假设正确或是不正确 ...

  4. 类图class的依赖关系

    类图class的依赖关系 相关文章          [UML]UML系列——用例图Use Case       [UML]UML系列——用例图中的各种关系(include.extend)       ...

  5. [转]How WebKit’s Event Model Works

    原文:https://homes.cs.washington.edu/~burg/projects/timelapse/articles/webkit-event-implementation/ Fi ...

  6. SystemTray文字颜色问题

    今天想给SystemTray的ForegroundColor设置为白色,但是模拟器正确,真机仍为黑色.经过一番折腾,发现是微软做了限制,背景是什么颜色,ForegroundColor就不能为什么颜色. ...

  7. TFTP:简单文本传输协议,BOOTP:引导程序协议

    TFTP:简单文本传输协议,BOOTP:引导程序协议 1.TFTP:      TFTP(Trivial File Transfer Protocol,简单文件传输协议)是TCP/IP协议族中的一个用 ...

  8. JavaEE:Servlet简介及ServletConfig、ServletContext

    Servlet简介 1.Servlet是sun公司提供的一门用于开发动态web资源的技术*静态web资源:固定数据文件*动态web资源:通过程序动态生成数据文件2.Servlet技术基于Request ...

  9. 解决TXT乱码问题

    初装Ubuntu,打开windows保存的txt文件很可能会遇到各种乱码问题. 下面是wiki ubuntu里的解决办法: Gedit中文乱码 缺省配置下,用 Ubuntu 的文本编辑器(gedit) ...

  10. 服务器如何防ssh服务暴力破解??

     如图: 当我们遭到暴力破解ssh服务该怎么办 内行看门道 外行看热闹  下面教大家几招办法: 1 密码足够的复杂,密码的长度要大于8位最好大于20位.密码的复杂度是密码要尽可能有数字.大小写字母和特 ...