Andrew Ng机器学习入门——线性回归
本人从2017年起,开始涉猎机器学习。作为入门,首先学习的是斯坦福大学Andrew Ng(吴恩达)教授的Coursera课程
2 单变量线性回归
线性回归属于监督学习(Supervise Learning)
,就是Right answer is given
。 课程中,举了一个估计房产价格的例子,在此,我就直接使用两组数据去作为例子使用线性回归,拟合出效果最好的曲线。
2.1 单变量线性回归算法的思路
- 根据数据的分布,确定模型
其中,h(x)是假设函数(Hypothesis Fuction),θ1和θ0 是关于线性回归的参数 - 确定代价函数(Cost Fuction)
其中,J(θ)是代价函数,也是误差函数,m代表数据个数,这样显然,目标函数就是: - 确定是实现目标函数的方法,就是使J(θ)最小的方法。在这里,我们使用梯度下降法(Gradient Descent )
对于此式,往下作解释。
下面我举一个很浅显的例子,验证线性回归算法的作用。
假设,有两组数据:
train_x = [1,2,3,4,5,6,7,8,9,10,11,12,13,14]
train_y = [3,5,7,9,11,13,15,17,19,21,23,25,27,29]
仔细观察这两组数据,发现它们满足:y = 2x +1这个函数关系,那么怎么使用线性回归得出这个结果呢?从机器学习的角度来说,就是怎么使得计算机能从已知的有限个数据中,拟合出最合适的曲线,并预测其他x值对应的y值。
2.2 线性模型
针对已知的数据,如果使用线性模型,由于只有一个特征/输入变量(此处指的是x),则属于单变量线性回归。预测函数为:
Python中使用Tensorflow库的实现:
#Input data
train_x = np.asarray([1,2,3,4,5,6,7,8,9,10,11,12,13,14])
train_y = np.asarray([3,5,7,9,11,13,15,17,19,21,23,25,27,29]) #Create the linear model
X = tf.placeholder("float")
W = tf.Variable(np.random.randn(),name="theta1")
b = tf.Variable(np.random.randn(),name="theta0")
pred = tf.add(tf.mul(W,X),b)
2.3 代价函数
建立基本模型之后,就要对模型误差进行评估,而这个评估的函数,就是代价函数
。
这里我们使用预测数据值和偏差的平方去表示模型的误差,式子如2.1所示。在tensorflow中实现:
m = train_x.shape[0] #数据总个数
cost = tf.reduce_sum(tf.pow(pred-Y, 2))/(2*m)
2.4目标函数的建立及实现
构造模型的目标,当然是是模型误差最小化,因此,目标函数为:
而怎么实现呢?在本例中,我们使用梯度下降,即:
其中,该式针对本例的意思,是:
这样,每进行一次运算,J(θ)的值就会进一步减少。
2.5 理清概念
模型理解的关键是切实理清假设函数和代价函数的作用。如下图所示:
注:图像均使用python下的matplotlib.pyplot和mpl_toolkits.mplot3d库所作。
显然,预测函数是根据训练数据而定的,而代价函数是为假设函数服务的,通过优化代价函数,就能找出最佳的参数赋给假设函数,从而找出最佳的模型。同时,由上图可见,当参数θ有两个的时候,代价函数是一个三维图,所以当参数更多的时候就是更多维的图。
2.6 程序实现线性回归
程序源码:
#!/usr/bin/env python2
#-*- coding:utf-8 -*-
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import sys reload(sys)
sys.setdefaultencoding('utf8') #Input data
train_x = np.asarray([1,2,3,4,5,6,7,8,9,10,11,12,13,14])
train_y = np.asarray([3,5,7,9,11,13,15,17,19,21,23,25,27,29]) X = tf.placeholder("float")
Y = tf.placeholder("float") #W,b分别代表θ1,θ0
#np.random.rann()用于初始化W和b
W = tf.Variable(np.random.randn(),name="theta1")
b = tf.Variable(np.random.randn(),name="theta0") #1 假设函数的确定
pred = tf.add(tf.mul(W,X),b) #2 代价函数的确定
m = train_x.shape[0] #
cost = tf.reduce_sum(tf.pow(pred-Y, 2))/(2*m) #3 梯度下降
learning_rate = 0.01
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
#至此模型构建完成 #Initialize the variables
init = tf.initialize_all_variables() #Lauch the graph
with tf.Session() as sess:
sess.run(init)
for epoch in range(1000): #进行100次的迭代训练
for (x,y) in zip(train_x,train_y):
sess.run(optimizer,feed_dict={X:x,Y:y})
#display
if(epoch+1)%50==0:
c=sess.run(cost,feed_dict={X:train_x,Y:train_y})
print "step:%04d, cost=%.9f, θ1=%s, θ0=%s"%((epoch+1),c,sess.run(W),sess.run(b))
print "Optimzer finished!"
#training_cost = sess.run(cost,feed_dict={X:train_x,Y:train_y}) print "The final is y=%sx+%s"%(sess.run(W),sess.run(b))
plt.plot(train_x,train_y,'ro',label="Original data")
plt.grid(True)
plt.plot(range(1,))
plt.plot(train_x,sess.run(W)*train_x+sess.run(b),label="Fitted line")
plt.legend()
plt.show()
程序运行结果:
step:0050, cost=0.068827711, θ1=1.92573, θ0=1.77617
step:0100, cost=0.055033159, θ1=1.93359, θ0=1.69404
step:0150, cost=0.044003420, θ1=1.94061, θ0=1.62061
step:0200, cost=0.035184156, θ1=1.9469, θ0=1.55494
step:0250, cost=0.028132409, θ1=1.95252, θ0=1.49622
step:0300, cost=0.022494031, θ1=1.95754, θ0=1.44372
step:0350, cost=0.017985778, θ1=1.96203, θ0=1.39677
step:0400, cost=0.014381131, θ1=1.96605, θ0=1.35479
step:0450, cost=0.011498784, θ1=1.96964, θ0=1.31725
step:0500, cost=0.009194137, θ1=1.97285, θ0=1.28368
step:0550, cost=0.007351381, θ1=1.97573, θ0=1.25366
step:0600, cost=0.005878080, θ1=1.97829, θ0=1.22682
step:0650, cost=0.004699936, θ1=1.98059, θ0=1.20282
step:0700, cost=0.003757860, θ1=1.98265, θ0=1.18136
step:0750, cost=0.003004675, θ1=1.98448, θ0=1.16217
step:0800, cost=0.002402445, θ1=1.98612, θ0=1.14501
step:0850, cost=0.001920973, θ1=1.98759, θ0=1.12967
step:0900, cost=0.001535962, θ1=1.9889, θ0=1.11595
step:0950, cost=0.001228108, θ1=1.99008, θ0=1.10368
step:1000, cost=0.000981987, θ1=1.99113, θ0=1.09271
Optimzer finished!
The final is y=1.99113x+1.09271
显然,最终得出的曲线很接近y=2x+1,如果增加训练的次数会更加接近。成功验证了线性回归算法!
Andrew Ng机器学习入门——线性回归的更多相关文章
- Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归)
title: Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归) tags: 机器学习, 学习笔记 grammar_cjkRuby: true --- 之前看过一遍,但是总是模 ...
- Andrew Ng机器学习课程笔记(一)之线性回归
Andrew Ng机器学习课程笔记(一)之线性回归 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7364598.html 前言 ...
- Andrew Ng机器学习算法入门(一):简介
简介 最近在参加一个利用机器学习来解决安全问题的算法比赛,但是对机器学习的算法一直不了解,所以先了解一下机器学习相关的算法. Andrew Ng就是前段时间从百度离职的吴恩达.关于吴恩达是谁,相信程序 ...
- Andrew Ng机器学习课程笔记(五)之应用机器学习的建议
Andrew Ng机器学习课程笔记(五)之 应用机器学习的建议 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7368472.h ...
- Andrew Ng机器学习课程笔记--汇总
笔记总结,各章节主要内容已总结在标题之中 Andrew Ng机器学习课程笔记–week1(机器学习简介&线性回归模型) Andrew Ng机器学习课程笔记--week2(多元线性回归& ...
- Andrew Ng机器学习课程笔记(四)之神经网络
Andrew Ng机器学习课程笔记(四)之神经网络 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7365730.html 前言 ...
- Andrew Ng机器学习课程笔记(三)之正则化
Andrew Ng机器学习课程笔记(三)之正则化 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7365475.html 前言 ...
- Andrew Ng机器学习课程笔记(二)之逻辑回归
Andrew Ng机器学习课程笔记(二)之逻辑回归 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7364636.html 前言 ...
- Andrew Ng机器学习课程10
Andrew Ng机器学习课程10 a example 如果hypothesis set中的hypothesis是由d个real number决定的,那么用64位的计算机数据表示的话,那么模型的个数一 ...
随机推荐
- openwrt路由器更换了Flash之后需要修改的源码
假如我使用的是WR703N,改为8M内存: 1 修改openwrt/target/linux/ar71xx/image/Makefile文件 $(eval $(call SingleProfile,T ...
- 个人实现的一个简单的蜗牛矩阵(c语言)
#include<stdio.h> #include<stdlib.h> int main(void) { int n,m; int x,y; int **array; int ...
- Linux 启动过程的详细解释
对于无论什么系统, 但无法打开电源这么简单的事, 很多事情将在几秒钟内几秒钟或几十本短时间内发生, 了解这一过程将是完整的引导解决问题的任何或提高开机速度的前提. 下一个, 我们会专门寻找Linux程 ...
- Memcache存储大量数据的问题
Memcache存储大数据的问题 huangguisu Memcached存储单个item最大数据是在1MB内,假设数据超过1M,存取set和get是都是返回false,并且引起性能的问题. 我们之 ...
- 宿主机跟Vmware中的linux使用host-only,bridge 方式通信
声明:我的机器在本文中叫 宿机,vmware中的linux就叫linux 本文已经实现了通过host-only模式 宿机 ping通 linux,但是在host-only模式下,linux 没有pin ...
- SignalR的服务器广播
可以试试 https://github.com/angular-ui/bootstrap 这个框架啊 [渣译文] SignalR 2.0 系列:SignalR的服务器广播 2014-03-13 09: ...
- C++中文件的操作
#include <iostream> #include <fstream> using namespace std; int main() { char s[27],m[27 ...
- MySQLdb/mysql-python安装时EnvironmentError: mysql_config not found
代码:root@vpser:~# cd MySQL-python-1.2.3root@vpser:~/MySQL-python-1.2.3# python setup.py install sh: m ...
- Android JNI(NDK)开发总结
早就知道Java有个jni可以调用本地化代码,一直没有动力去研究它,现在公司想通过在Android中调用本地化代码来申请较多的内存以突破Android对单个进程的内存限制,这确实是可行的:我的Nexu ...
- Linux 环境进程间通信(六):
linux下进程间通信的几种主要手段: 管道(Pipe)及有名管道(named pipe):管道可用于具有亲缘关系进程间的通信,有名管道克服了管道没有名字的限制,因此,除具有管道所具有的功能外,它还允 ...