HDU 6343 - Problem L. Graph Theory Homework - [(伪装成图论题的)简单数学题]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6343
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)
Problem Description
There is a complete graph containing n vertices, the weight of the i-th vertex is wi.
The length of edge between vertex i and j (i≠j) is ⌊sqrt(|wi−wj|)⌋.
Calculate the length of the shortest path from 1 to n.
Input
The first line of the input contains an integer T (1≤T≤10) denoting the number of test cases.
Each test case starts with an integer n (1≤n≤10^5) denoting the number of vertices in the graph.
The second line contains n integers, the i-th integer denotes wi (1≤wi≤10^5).
Output
For each test case, print an integer denoting the length of the shortest path from 1 to n.
Sample Input
1
3
1 3 5
Sample Output
2
题意:
给出一张完全图由n个点组成,编号1~n,每个点有一个权重 ${w_i }$,对于任意不同两点 i 和 j 之间的边的长度为 $\left\lfloor {\sqrt {\left| {w_i - w_j } \right|} } \right\rfloor$,
要求给出从1到n的最短路长度。
题解:
先说结论:对于任意两点 i 和 j,${\mathop{\rm edge}\nolimits} \left( {i,j} \right)$ 这条边是最短路;
我们首先来证明:
$\left\lfloor {\sqrt a } \right\rfloor + \left\lfloor {\sqrt b } \right\rfloor \ge \left\lfloor {\sqrt {a + b} } \right\rfloor$
其中 $a,b$ 均为正整数。
证明:
设有两个正整数 $m,n$ 满足 $a \in \left[ {m^2 ,\left( {m + 1} \right)^2 - 1} \right],b \in \left[ {n^2 ,\left( {n + 1} \right)^2 - 1} \right]$,则 $\left\lfloor {\sqrt a } \right\rfloor = m,\left\lfloor {\sqrt b } \right\rfloor = n$,
那么自然就有
$a + b \in \left[ {m^2 + n^2 ,m^2 + n^2 + 2m + 2n} \right]$
$\sqrt {a + b} \in \left[ {\sqrt {m^2 + n^2 } ,\sqrt {m^2 + n^2 + 2m + 2n} } \right]$
此时,我们考察两个完全平方数 $\left( {m + n} \right)^2 ,\left( {m + n + 1} \right)^2$,将他们展开:$m^2 + n^2 + 2mn\;\;,\;\;m^2 + n^2 + 2mn + 2m + 2n + 1$,
显然 $\left( {m + n + 1} \right)^2 = \;m^2 + n^2 + 2mn + 2m + 2n + 1 > m^2 + n^2 + 2m + 2n$,也就是说平方数 $\left( {m + n + 1} \right)^2$ 大于 $a+b$ 所属区间的右端点,
再分类讨论 $\left( {m + n} \right)^2$ 与 $a+b$ 所属区间的右端点的关系:
①若 $mn \ge m + n$,则
$\left( {m + n} \right)^2 = m^2 + n^2 + 2mn \ge m^2 + n^2 + 2m + 2n$
$m + n \ge \sqrt {m^2 + n^2 + 2m + 2n}$
即
$\left\lfloor {\sqrt a } \right\rfloor + \left\lfloor {\sqrt b } \right\rfloor \ge \sqrt {m^2 + n^2 + 2m + 2n} \ge \sqrt {a + b} \ge \left\lfloor {\sqrt {a + b} } \right\rfloor$
②若 $mn < m + n$,则
$m^2 + n^2 + 2mn < m^2 + n^2 + 2m + 2n$
也就是说,$a + b$ 所属区间 $\left[ {m^2 + n^2 ,m^2 + n^2 + 2m + 2n} \right]$ 的右端点在两个完全平方数 $\left( {m + n} \right)^2 ,\left( {m + n + 1} \right)^2$ 之间,
那么根据开根号再向下取整的性质,显然有
$\left\lfloor {\sqrt {a + b} } \right\rfloor \le \sqrt {\left( {m + n} \right)^2 } = m + n = \left\lfloor {\sqrt a } \right\rfloor + \left\lfloor {\sqrt b } \right\rfloor$
综上所述,就证明了 $\left\lfloor {\sqrt a } \right\rfloor + \left\lfloor {\sqrt b } \right\rfloor \ge \left\lfloor {\sqrt {a + b} } \right\rfloor$,
而且不难发现,将 $a,b$ 范围扩大成均为非负整数也不会影响上述不等式成立。
接下来,对于完全图上的任意两点 i 和 j,若任取其他一个点 k,我们来证明 $\left\lfloor {\sqrt {\left| {w_i - w_k } \right|} } \right\rfloor + \left\lfloor {\sqrt {\left| {w_k - w_j } \right|} } \right\rfloor \ge \left\lfloor {\sqrt {\left| {w_i - w_j } \right|} } \right\rfloor$,
换句话说,我们要证明 ${\mathop{\rm edge}\nolimits} \left( {i,k} \right) + {\mathop{\rm edge}\nolimits} \left( {k,j} \right) \ge {\mathop{\rm edge}\nolimits} \left( {i,j} \right)$,此处 ${\mathop{\rm edge}\nolimits} \left( {i,j} \right)$ 代表连接 i 和 j 两点的边的长度。
证明:
首先,根据绝对值不等式可以知道
$\left| {w_i - w_k } \right| + \left| {w_k - w_j } \right| \ge \left| {w_i - w_k + w_k - w_j } \right| = \left| {w_i - w_j } \right|$
其次,易知若两非负整数满足 $m \ge n$,则 $\left\lfloor {\sqrt m } \right\rfloor \ge \left\lfloor {\sqrt n } \right\rfloor$,
那么自然就有
$\left\lfloor {\sqrt {\left| {w_i - w_k } \right| + \left| {w_k - w_j } \right|} } \right\rfloor \ge \left\lfloor {\sqrt {\left| {w_i - w_j } \right|} } \right\rfloor$
再者,根据上文证明的公式 $\left\lfloor {\sqrt a } \right\rfloor + \left\lfloor {\sqrt b } \right\rfloor \ge \left\lfloor {\sqrt {a + b} } \right\rfloor$,有
$\left\lfloor {\sqrt {\left| {w_i - w_k } \right|} } \right\rfloor + \left\lfloor {\sqrt {\left| {w_k - w_j } \right|} } \right\rfloor \ge \left\lfloor {\sqrt {\left| {w_i - w_k } \right| + \left| {w_k - w_j } \right|} } \right\rfloor$
最后,上面两个不等式连起来即
$\left\lfloor {\sqrt {\left| {w_i - w_k } \right|} } \right\rfloor + \left\lfloor {\sqrt {\left| {w_k - w_j } \right|} } \right\rfloor \ge \left\lfloor {\sqrt {\left| {w_i - w_j } \right|} } \right\rfloor$
证毕。
那么,我们就知道了图上任意两点 i 和 j,不会有第三个点 k 存在,使得 ${\mathop{\rm edge}\nolimits} \left( {i,k} \right) + {\mathop{\rm edge}\nolimits} \left( {k,j} \right)$ 比 ${\mathop{\rm edge}\nolimits} \left( {i,j} \right)$ 更小,
那么同样不会存在其他两个点 k 和 p,使得 ${\mathop{\rm edge}\nolimits} \left( {i,k} \right) + {\mathop{\rm edge}\nolimits} \left( {k,p} \right) + {\mathop{\rm edge}\nolimits} \left( {p,j} \right)$ 比 ${\mathop{\rm edge}\nolimits} \left( {i,j} \right)$ 更小,
原因很简单,因为 ${\mathop{\rm edge}\nolimits} \left( {k,p} \right) + {\mathop{\rm edge}\nolimits} \left( {p,j} \right) \ge {\mathop{\rm edge}\nolimits} \left( {k,j} \right)$ 且 ${\mathop{\rm edge}\nolimits} \left( {i,k} \right) + {\mathop{\rm edge}\nolimits} \left( {k,j} \right) \ge {\mathop{\rm edge}\nolimits} \left( {i,j} \right)$,
所以,对于任意两点 i 和 j,不管另取多少个点,都不会让从 i 到 j 的路径比 ${\mathop{\rm edge}\nolimits} \left( {i,j} \right)$ 更短,因而 ${\mathop{\rm edge}\nolimits} \left( {i,j} \right)$ 这条边就是最短路。
AC代码:
- #include<bits/stdc++.h>
- using namespace std;
- int main()
- {
- int T,n;
- cin>>T;
- while(T--)
- {
- scanf("%d",&n);
- int w,a,b;
- for(int i=;i<=n;i++)
- {
- scanf("%d",&w);
- if(i==) a=w;
- if(i==n) b=w;
- }
- printf("%d\n",(int)floor(sqrt(abs(a-b))));
- }
- }
HDU 6343 - Problem L. Graph Theory Homework - [(伪装成图论题的)简单数学题]的更多相关文章
- HDU 6343.Problem L. Graph Theory Homework-数学 (2018 Multi-University Training Contest 4 1012)
6343.Problem L. Graph Theory Homework 官方题解: 一篇写的很好的博客: HDU 6343 - Problem L. Graph Theory Homework - ...
- 2018 Multi-University Training Contest 4 Problem L. Graph Theory Homework 【YY】
传送门:http://acm.hdu.edu.cn/showproblem.php?pid=6343 Problem L. Graph Theory Homework Time Limit: 2000 ...
- HDU 6330.Problem L. Visual Cube-模拟到上天-输出立方体 (2018 Multi-University Training Contest 3 1012)
6330.Problem L. Visual Cube 这个题就是输出立方体.当时写完怎么都不过,后来输出b<c的情况,发现这里写挫了,判断失误.加了点东西就过了,mdzz... 代码: //1 ...
- HDU 6437 Problem L.Videos (最大费用)【费用流】
<题目链接> 题目大意: 一天有N个小时,有m个节目(每种节目都有类型),有k个人,连续看相同类型的节目会扣w快乐值.每一种节目有都一个播放区间[l,r].每个人同一时间只能看一个节目,看 ...
- HDU - 6437 Problem L.Videos 2018 Multi-University Training Contest 10 (最小费用最大流)
题意:M个影片,其属性有开始时间S,结束时间T,类型op和权值val.有K个人,每个人可以看若干个时间不相交的影片,其获得的收益是这个影片的权值val,但如果观看的影片相邻为相同的属性,那么收益要减少 ...
- 【HDOJ6343】Graph Theory Homework(贪心)
题意: 给定n个点,每个点有权值a[i],从A走到B的花费是下取整sqrt(a[i]-a[j]),求从1号点走到n号点的最小花费 1<=n,a[i]<=1e5 思路: #include&l ...
- Introduction to graph theory 图论/脑网络基础
Source: Connected Brain Figure above: Bullmore E, Sporns O. Complex brain networks: graph theoretica ...
- HDU 5876:Sparse Graph(BFS)
http://acm.hdu.edu.cn/showproblem.php?pid=5876 Sparse Graph Problem Description In graph theory, t ...
- HDU 6430 Problem E. TeaTree(虚树)
Problem E. TeaTree Problem Description Recently, TeaTree acquire new knoledge gcd (Greatest Common D ...
随机推荐
- window.location.href
WEB设置首页 <welcome-file-list> <welcome-file>index.html</welcome-file> </welcome-f ...
- Eclipse cdt解决github导入的项目无法打开声明的bug (cannot open declaration)
概述: 我利用eclipse 的git插件clone github上的远程项目(C++)到本地时遇到一个问题:clone下来的项目没有C++特性,无法使用open declaration等操作,下面是 ...
- PHP mysql经典问题,防止库存把控不足问题
在目前这家公司做的第一个项目抽奖项目,要求每人每天可以有20次抽奖机会,抽奖机会可以通过多种方式获取,那么就要求每次入库增加抽奖机会的时候检测当前拥有的抽奖机会是否达到了20次,如果达到了,就不再增加 ...
- 【Ubuntu】Windows 远程桌面连接ubuntu及xrdp的一些小问题(远程桌面闪退、连接失败、tab补全功能,无菜单栏,error - problem connecting )【转】
转:https://blog.csdn.net/u014447845/article/details/80291678 1.远程桌面闪退,shell可以用的问题:(1)需要在该用户目录创建一个.xse ...
- Greenplum-cc-web安装
第一章 文档概述 1. 本安装手册描述适用于Greenplum4.0以上版本的安装Greenplum-cc-web操作 第二章 安装介质 针对Greenplum版本下载对应Greenplum-cc-w ...
- 【RF库Collections测试】Set List Value
Name:Set List ValueSource:Collections <test library>Arguments:[ list_ | index | value ]Sets th ...
- Splash js_enabled 属性
js_enabled属性是 Splash 的 JavaScript 执行开关,可以将其配置为 true 或 false 来控制是否执行 JavaScript 代码,默认为 true .例如,这里禁止执 ...
- centos6.4安装GCC
1. Last login: Mon Aug 4 11:46:15 2014 from 10.3.7.128 [jifeng@jifeng04 ~]$ ls hadoop jdk1.7.0_45 ...
- React Native(七)——react-native-elements
配合React native使用的UI库:https://react-native-training.github.io/react-native-elements/ 1. 新建项目:http://w ...
- ajax二级联动代码实例
//二级联动 $(function () { var _in_progress = false; function check_in_progress() { if (_in_progress == ...