c++ 的 eigen 类似于 python 的 numpy, 还有一个类似的库是 Armadillo, 当然还有 opencv.

Armadillo 与 matlab 在函数名称上更接近, 但是 TensorFlow 和 Ceres 使用了 eigen.

这里不讲究谁优谁劣, 入门阶段迅速掌握一个, 用起来就够了.

1. The Matrix Class

1) The first three template parameters of Matrix

Matrix<typename Scalar, int RowsAtCompileTime, int ColsAtCompileTime>

typedef Matrix<float, , > Matrix4f;

2) Vectors

In Eigen, vectors are just a special case of matrices.

typedef Matrix<float, , > Vector3f;

typedef Matrix<int, , > RowVector2i;

3) The special value dynamic

Matrices dimensions can be unknown at compile time in Eigen.

typedef Matrix<double, Dynamic, Dynamic> MatrixXd;

typedef Matrix<int, Dynamic, > VectorXi;

Matrix<float, , Dynamic>;

4) Constructors

Matrix3f a;

MatrixXf b;

MatrixXf a(, );

MatrixXf b();

Matrix3f a(, );

Vector2d a(5.0, 6.0);

Vector3d b(5.0, 6.0, 7.0);

Matrix3f 声明的矩阵, 大小是固定的, 不能修改. 4维之下的矩阵可以使用形如 Matrix4f 的形式, 稍微增加编译时间, 但是执行更快.

5) Coefficient accessors

int main()
{
MatrixXd m(,);
m(,) = ;
m(,) = 2.5;
m(,) = -;
m(,) = m(,) + m(,);
std::cout << "Here is the matrix m:\n" << m << std::endl;
VectorXd v();
v() = ;
v() = v() - ;
std::cout << "Here is the vector v:\n" << v << std::endl;
}

m(index) 除了可以访问 vector, 还可以访问 matrix, matrix 在 Eigen 中默认按列存储. 在上例中, m(2) == -1.

[] 也被重载了, 类似 () 的功能, 但是只能有一个 index, 因为 c++ 的特性, matrix[i, j] == matrix[j].

推测, 访问单独或批量的列或行, 应该有专有的函数, 用 () 和 [] 只能访问单个值.

6) Comma-initialization

Matrix3f m;
m << , , ,
, , ,
, , ;
cout << m;

7) Resizing

int main()
{
MatrixXd m(,);
m.resize(,);
std::cout << "The matrix m is of size "
<< m.rows() << "x" << m.cols() << std::endl;
std::cout << "It has " << m.size() << " coefficients" << std::endl;
VectorXd v();
v.resize();
std::cout << "The vector v is of size " << v.size() << std::endl;
std::cout << "As a matrix, v is of size "
<< v.rows() << "x" << v.cols() << std::endl;
}

resize() 会覆盖之前矩阵的值, 如果要保留原有未知的值, 可以使用 conservativeResize().

再次强调, 形如 Matrix4d 声明的矩阵大小不可更改.

8) Assignment and resizing

MatrixXf a(,);
std::cout << "a is of size " << a.rows() << "x" << a.cols() << std::endl;
MatrixXf b(,);
a = b;
std::cout << "a is now of size " << a.rows() << "x" << a.cols() << std::endl;

如果等号左侧是 fixed size, 则 resizing 不被允许.

9) Convenience typedefs

MatrixNt for Matrix<type, N, N>

VectorNt for Matrix<type, N, 1>

RowVectorNt for Matrix<type, 1, N>

N can be 2, 3,... or X (Dynamic)

t can be i (int), f (float), d (double), cf (complex<float>), cd (complex<double>)

2. Matrix and vector arithmetic

1) Introduction

Eigen 重载了 matrix 之间的运算符号, 但是 matrix 和 scalar 之间的运算符号未重载.

2) Addition and subtraction

Eigen 不会对 scalar 进行自动类型转换.

a + b, a - b,  -a, a += b, a -= b

int main()
{
Matrix2d a;
a << , ,
, ;
MatrixXd b(,);
b << , ,
, ;
std::cout << "a + b =\n" << a + b << std::endl;
std::cout << "a - b =\n" << a - b << std::endl;
std::cout << "Doing a += b;" << std::endl;
a += b;
std::cout << "Now a =\n" << a << std::endl;
Vector3d v(,,);
Vector3d w(,,);
std::cout << "-v + w - v =\n" << -v + w - v << std::endl;
}

3) Scalar multiplication and division

matrix * scalar, scalar * matrix, matrix / scalar, matrix *= scalar, matrix /= scalar

int main()
{
Matrix2d a;
a << , ,
, ;
Vector3d v(,,);
std::cout << "a * 2.5 =\n" << a * 2.5 << std::endl;
std::cout << "0.1 * v =\n" << 0.1 * v << std::endl;
std::cout << "Doing v *= 2;" << std::endl;
v *= ;
std::cout << "Now v =\n" << v << std::endl;
}

4) A note about expression templates

简单说就是 Eigen 对 arithmetic expression 有进行优化, 但这是它应该做的.

5) Transposition and conjugation

transpose() 转置

MatrixXcf a = MatrixXd::Random(,);
cout << "Here is the matrix a\n" << a << endl;
cout << "Here is the matrix a^T\n" << a.transpose() << endl;

不能使用 a = a.transpose(), a 的值会发生错乱, 要使用 a = a.transposeInPlace().

Matrix2i a; a << , , , ;
cout << "Here is the matrix a:\n" << a << endl;
a = a.transpose(); // !!! do NOT do this !!!
cout << "and the result of the aliasing effect:\n" << a << endl;
a.transposeInPlace();
cout << "and after being transposed:\n" << a << endl;

6) Matrix-matrix and matrix-vector multiplication

a * b, a *= b

对于 a *= b, 如果 size 会发生变化, 则 a 不能是 fixed size

int main()
{
Matrix2d mat;
mat << , ,
, ;
Vector2d u(-,), v(,);
std::cout << "Here is mat*mat:\n" << mat*mat << std::endl;
std::cout << "Here is mat*u:\n" << mat*u << std::endl;
std::cout << "Here is u^T*mat:\n" << u.transpose()*mat << std::endl;
std::cout << "Here is u^T*v:\n" << u.transpose()*v << std::endl;
std::cout << "Here is u*v^T:\n" << u*v.transpose() << std::endl;
std::cout << "Let's multiply mat by itself" << std::endl;
mat = mat*mat;
std::cout << "Now mat is mat:\n" << mat << std::endl;
}

7) Dot product and cross product

dot() 点积

cross() 叉积

int main()
{
Vector3d v(,,);
Vector3d w(,,);
cout << "Dot product: " << v.dot(w) << endl;
double dp = v.adjoint()*w; // automatic conversion of the inner product to a scalar
cout << "Dot product via a matrix product: " << dp << endl;
cout << "Cross product:\n" << v.cross(w) << endl;
}

8) Basic arithmetic reduction operations

sum(), prod(), mean(), minCoeff(), maxCoeff(), trace()

int main()
{
Eigen::Matrix2d mat;
mat << , ,
, ;
cout << "Here is mat.sum(): " << mat.sum() << endl;
cout << "Here is mat.prod(): " << mat.prod() << endl;
cout << "Here is mat.mean(): " << mat.mean() << endl;
cout << "Here is mat.minCoeff(): " << mat.minCoeff() << endl;
cout << "Here is mat.maxCoeff(): " << mat.maxCoeff() << endl;
cout << "Here is mat.trace(): " << mat.trace() << endl;
}

a.trace() == a.diagonal().sum()

minCoeff() 和 maxCoeff() 除了返回最小最大值, 还可以获取该值的索引

  Matrix3f m = Matrix3f::Random();
std::ptrdiff_t i, j;
float minOfM = m.minCoeff(&i,&j);
cout << "Here is the matrix m:\n" << m << endl;
cout << "Its minimum coefficient (" << minOfM
<< ") is at position (" << i << "," << j << ")\n\n";
RowVector4i v = RowVector4i::Random();
int maxOfV = v.maxCoeff(&i);
cout << "Here is the vector v: " << v << endl;
cout << "Its maximum coefficient (" << maxOfV
<< ") is at position " << i << endl;

9) Validity of operations

编译时和运行时都会检查运算的合法性

Matrix3f m;
Vector4f v;
v = m*v; // Compile-time error: YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES MatrixXf m(,);
VectorXf v();
v = m * v; // Run-time assertion failure here: "invalid matrix product"

3. The array class and coefficient-wise operations

1) Array types

Array<typename Scalar, int RowsAtCompileTime, int ColsAtCompileTime>

可以有多维数组

Array<float, Dynamic, 1> ArrayXf

Array<float, 3, 1> Array3f

Array<double, Dynamic, Dynamic> ArrayXXd

Array<double, 3, 3> Array33d

2) Accessing values inside an Array

int main()
{
ArrayXXf m(,); // assign some values coefficient by coefficient
m(,) = 1.0; m(,) = 2.0;
m(,) = 3.0; m(,) = m(,) + m(,); // print values to standard output
cout << m << endl << endl; // using the comma-initializer is also allowed
m << 1.0,2.0,
3.0,4.0; // print values to standard output
cout << m << endl;
}

3) Addition and subtraction

array + array, array - scalar

int main()
{
ArrayXXf a(,);
ArrayXXf b(,);
a << ,,,
,,,
,,;
b << ,,,
,,,
,,; // Adding two arrays
cout << "a + b = " << endl << a + b << endl << endl;
// Subtracting a scalar from an array
cout << "a - 2 = " << endl << a - << endl;
}

4) Array multiplicaiton

区分于矩阵乘法, 对应位置参数相乘.

int main()
{
ArrayXXf a(,);
ArrayXXf b(,);
a << ,,
,;
b << ,,
,;
cout << "a * b = " << endl << a * b << endl;
}

5) Other coefficient-wise operations

abs(), sqrt(), min() 两个 array 对应位置取最小

int main()
{
ArrayXf a = ArrayXf::Random();
a *= ;
cout << "a =" << endl
<< a << endl;
cout << "a.abs() =" << endl
<< a.abs() << endl;
cout << "a.abs().sqrt() =" << endl
<< a.abs().sqrt() << endl;
cout << "a.min(a.abs().sqrt()) =" << endl
<< a.min(a.abs().sqrt()) << endl;
}

6) Converting between array and matrix expressions

matrix 有一个 array() 方法, array 有一个 matrix 方法, .array() 和 .matrix() 的返回值可以用作左值或右值.

matrix 有一个 cwiseProduct() 方法, 用于两个 matrix 对应参数相乘.

Eigen 允许将 array expression 赋值给 matrix 变量.

int main()
{
MatrixXf m(,);
MatrixXf n(,);
MatrixXf result(,);
m << ,,
,;
n << ,,
,;
result = m * n;
cout << "-- Matrix m*n: --" << endl << result << endl << endl;
result = m.array() * n.array();
cout << "-- Array m*n: --" << endl << result << endl << endl;
result = m.cwiseProduct(n);
cout << "-- With cwiseProduct: --" << endl << result << endl << endl;
result = m.array() + ;
cout << "-- Array m + 4: --" << endl << result << endl << endl;
}

稍微复杂点的栗子

int main()
{
MatrixXf m(,);
MatrixXf n(,);
MatrixXf result(,);
m << ,,
,;
n << ,,
,; result = (m.array() + ).matrix() * m;
cout << "-- Combination 1: --" << endl << result << endl << endl;
result = (m.array() * n.array()).matrix() * m;
cout << "-- Combination 2: --" << endl << result << endl << endl;
}

eigen 笔记1的更多相关文章

  1. eigen 笔记2

    4. Block operations 1) Using block operations Block of size(p, q), starting at (i, j) dynamic-size b ...

  2. Eigen学习笔记2-Matrix类

    在Eigen中,所有的矩阵Matrix和向量Vector都是由Matrix类构造的.向量只不过是矩阵的特殊形式,只有一列(列向量)或者一行. Matrix模板类有6个参数,其中前三个参数是必须的.前三 ...

  3. Eigen学习笔记2:C++矩阵运算库Eigen介绍

    Eigen常规矩阵定义 1.使用 Eigen的使用在官网上有详细的介绍,这里对我学习过程中用到的基本操作进行介绍.首先是矩阵的定义.在矩阵类的模板参数共有6个.一般情况下我们只需要关注前三个参数即可. ...

  4. Eigen学习笔记1:在VS2015下Eigen(矩阵变换)的配置

    一.Eigen简介 Eigen是一个高层次的C ++库,有效支持线性代数,矩阵和矢量运算,数值分析及其相关的算法. Eigen适用范围广,支持包括固定大小.任意大小的所有矩阵操作,甚至是稀疏矩阵:支持 ...

  5. 从零开始编写深度学习库(五)Eigen Tensor学习笔记2.0

    1.extract_image_patches函数的使用: 假设Eigen::Tensor形状为(3,8,8,9),现在要对第二维.第三维根据size大小为(2,2),stride=(2,2),那么如 ...

  6. Eigen库笔记整理(二)

    Eigen/Geometry 模块提供了各种旋转和平移的表示 旋转矩阵直接使用 Matrix3d 或 Matrix3f Eigen::Matrix3d rotation_matrix = Eigen: ...

  7. Eigen库笔记整理(一)

    首先熟悉Eigen库的用途,自行百度. 引入头文件: // Eigen 部分 #include <Eigen/Core> // 稠密矩阵的代数运算(逆,特征值等) #include < ...

  8. Eigen 矩阵库学习笔记

    最近为了在C++中使用矩阵运算,简单学习了一下Eigen矩阵库.Eigen比Armadillo相对底层一点,但是只需要添加头文库即可使用,不使用额外的编译和安装过程. 基本定义 Matrix3f是3* ...

  9. Eigen 学习笔记

    1.  初始化 //外部指针初始化 ]={...}; ] = ...; kernels[].mu = Vector3d(_mu0); kernels[].sigma_inv = Matrix3d(_s ...

随机推荐

  1. 面试题:应用中很多jar包,比如spring、mybatis、redis等等,各自用的日志系统各异,怎么用slf4j统一输出?(上)

    一.问题概述 如题所说,后端应用(非spring boot项目)通常用到了很多jar包,比如spring系列.mybatis.hibernate.各类连接数据库的客户端的jar包.可能这个jar包用的 ...

  2. 关于windows 7系统下开启休眠功能的方法

    今天笔者新装了一个windows 7操作系统,装完后,点击开始按钮.鼠标放到关机处的左边扩展选项时,没有发现休眠选项. 于是开始上网查询解决方法,并将过程记录如下: 首先简单的介绍一下休眠功能:休眠( ...

  3. Spark2 Dataset聚合操作

    data.groupBy("gender").agg(count($"age"),max($"age").as("maxAge&q ...

  4. Mongodb高级篇-性能优化

    1.监控 mongodb可以通过profile来监控数据,进行优化. 查看当前是否开启profile功能用命令:db.getProfilingLevel()返回level等级,值为0|1|2,分别代表 ...

  5. 7.19python昨日复习和多线程

    关于GIL锁的经典面试题!!

  6. CentOS7.5搭建Solr7.4.0集群服务

    一.Solr集群概念 solr单机版搭建参考: https://www.cnblogs.com/frankdeng/p/9615253.html 1.概念 SolrCloud(solr 云)是Solr ...

  7. JAVAORM框架之Mybatis (Ibatis) 详解

    目录 Mybatis基础概念 Mybatis开放方式演进 Mybatis框架核心要点 关联查询 延迟加载(懒加载) 动态SQL Mybatis缓存 Mybatis逆向工程 PageHelper分页插件 ...

  8. Nginx设置网站维护页面

    网站升级需要停服,可以在Nginx设置静态页面设置强制跳转 修改nginx配置文件nginx.conf http { sendfile on; keepalive_timeout 65; server ...

  9. 计蒜客 31451 - Ka Chang - [DFS序+树状数组][2018ICPC沈阳网络预赛J题]

    题目链接:https://nanti.jisuanke.com/t/31451 Given a rooted tree ( the root is node $1$ ) of $N$ nodes. I ...

  10. @font-face 字体图标的应用

    所谓字体图标,顾名思义就是图标以字体的形式存在,可以利用 font-size.color 对字体图标的大小和颜色进行渲染.将小图标集中放到字体库里,利用css3 @font-face 引用图标,不仅有 ...