标题也许叫整除分块吧

求\(1\)到\(n\)因数的个数\(\sum_{i=1}^n(\sum_{d|n}1)\)

范围\(1e14\)时限3s

\(n\sqrt{n}\)的暴力铁定gg

分开考虑

\(1\)到\(n\)中含有\(1\)因数的个数有\(n/1\)个

含有2因数的个数有\(n/2\)个**

······

含有n因数的个数有\(n/n\)个

问题就转化为求\(\sum_{i=1}^{n}[\frac{n}{i}]\)

然后我们就可以把\(O(n\sqrt{n})\)的暴力转化为\(O(n)\)了

可还是过不了&1e14的数据&

我们发现,我们求得\(\frac{n}{i}\)在一段区间内是连续的

而且呈现单调递减,这样我们就可以开心的套用二分啦

那到底有多少段连续的区间

把i分开考虑

1到\(\sqrt{n}\)之内,if都不同撑死有\(\sqrt{n}\)段

\(\sqrt{n}\)到n之内,求\(\frac{n}{i}\)连续的一段,取值范围为1到\(\sqrt{n}\)之内,撑死也有\(\sqrt{n}\)个

区间个数是\(\sqrt{n}\)级别的,二分是\(log\)级别的

所以复杂度为\(O(\sqrt{n}logn)\)

一直以为这是根号的%>_<%

参见牛客练习赛25(1e9)

#include <bits/stdc++.h>
using namespace std;
long long ans;
int l,n;
int main() {
int q;
cin>>q;
while(q--) {
cin>>n;
l=1;
ans=0;
for(int i=1; i<=n; ++i) {
int r=n;
int mid=(l+r)>>1;
while(n/l!=n/r) {
mid=(l+r)>>1;
r=mid;
}
ans+=n/l*(r-l+1);
if(r==n) break;
l=r+1;
}
cout<<ans<<"\n";
}
return 0;
}

直到我遇到了这个题luogu3935以及评测80sTLE的惨痛

才发现我是个zz诶

\(i\) \(1\) \(2\) \(3\) \(4\) \(5\) \(6\) \(7\) \(8\) \(9\) \(10\) \(11\) \(12\)
\(n/i\) \(12\) \(6\) \(4\) \(3\) \(2\) \(2\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\)

当我们知道\(l\)的时候,也就是一段的开头,如何快速找到我们要的r呢

\(n/l\)是\(n\)中含有\(t=n/l\)块完整的\(l\)

那么\(n/t\)便是有\(t\)块最大的数,便是我们要求的\(r\)

所以\(r=n/(n/l)\)

所以我们求块的时间由二分的\(O(logn)\)变为了\(O(1)\)

复杂度为\(O(\sqrt{n})\)

#include <bits/stdc++.h>
#define ll long long
using namespace std;
const ll mod=998244353;
ll solve(ll n)
{
ll ans=0;
for(ll l=1,r;l<=n;l=r+1)
{
r=n/(n/l);
ans+=(r-l+1)%mod*(n/l)%mod;
ans%=mod;
}
return ans;
}
int main()
{
ll x,y;
cin>>x>>y;
cout<<((solve(y)-solve(x-1))%mod+mod)%mod;
return 0;
}

http://www.cnblogs.com/1000Suns/p/9193713.html

luogu3935 Calculating的更多相关文章

  1. 长时间停留在calculating requirements and dependencies 解决方案

    如果Eclipse花费了很长的时间calculating requirements and dependencies(计算需求和依赖性 ) 这个问题通常就是在点击安装之后显示“Calculating ...

  2. 长时间停留在calculating requirements and dependencies 的解决方案

    如果Eclipse花费了很长的时间calculating requirements and dependencies(计算需求和依赖性 ) 这个问题通常就是在点击安装之后显示“Calculating ...

  3. Calculating Stereo Pairs

    Calculating Stereo Pairs Written by Paul BourkeJuly 1999 Introduction The following discusses comput ...

  4. Calculating simple running totals in SQL Server

    Running total for Oracle: SELECT somedate, somevalue,SUM(somevalue) OVER(ORDER BY somedate ROWS BETW ...

  5. Codeforces Round #277 (Div. 2) A. Calculating Function 水题

    A. Calculating Function Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/4 ...

  6. cf486A Calculating Function

    A. Calculating Function time limit per test 1 second memory limit per test 256 megabytes input stand ...

  7. Android ADT安装时卡在Calculating requirements and dependencies

    AndroidSDK及Eclipse安装都很顺利,但是在Eclipse下安装ADT插件时,先采用点击Help->installnew software->Add...,无论输入https: ...

  8. 长时间停留在calculating requirements and dependencies

    如果安装插件的时候,Eclipse花费了很长的时间calculating requirements and dependencies(计算需求和依赖性 )这个问题通常就是在点击安装之后显示“Calcu ...

  9. 洛谷P3935 Calculating (莫比乌斯反演)

    P3935 Calculating 题目描述 若xx分解质因数结果为\(x=p_1^{k_1}p_2^{k_2}\cdots p_n^{k_n},令f(x)=(k_1+1)(k_2+1)\cdots ...

随机推荐

  1. Django - 日期、时间字段

    创建django的model时,有DateTimeField.DateField和TimeField三种类型可以用来创建日期字段,其值分别对应着datetime().date().time()三中对象 ...

  2. 2018/04/02 PHP 中的浮点数计算问题

    首先抛出一个问题 var_dump((0.1 + 0.2) == 0.3); 这个判断是否正确呢? 它的输出是 false 是否和你想的一样呢? -- 浮点精度运算可以说是每个语言都必有的问题.因为这 ...

  3. 洛谷P2444 病毒 [POI2000] AC自动机

    正解:AC自动机 解题报告: 传送门! 首先看到这种题目二话不说先把trie树和fail指针建立起来 然后就想鸭,如果我们想让模式串和文本串尽量不能匹配,就要想办法让它跳fail指针,而不是继续往下走 ...

  4. Html各组件MIME类型

    扩展名 类型/子类型 * application/octet-stream 323 text/h323 acx application/internet-property-stream ai appl ...

  5. PAT 1049 Counting Ones[dp][难]

    1049 Counting Ones (30)(30 分) The task is simple: given any positive integer N, you are supposed to ...

  6. Google面试题[一]

    谷歌是不少IT人都想去的企业,那么在进入公司前,少不了面试笔试的测试.那么这里我们就总结了如下谷歌笔试题,并提供了一些参考答案.希望对您有用. 谷歌笔试题:判断一个自然数是否是某个数的平方.当然不能使 ...

  7. testng入门教程12 TestNG执行多线程测试

    testng入门教程 TestNG执行多线程测试 testng入门教程 TestNG执行多线程测试 并行(多线程)技术在软件术语里被定义为软件.操作系统或者程序可以并行地执行另外一段程序中多个部分或者 ...

  8. 11.2.0.4 RAC测试环境修改时区

    当前问题: 系统时区修改后,集群数据库各个日志发现显示的还是之前时区的时间. 依据Linux (RHEL)修改时区更改了系统的时区后,集群数据库的各个日志还是显示之前的时区时间. 查找MOS资料 Ho ...

  9. 更高效的MergeSort--稍微优化

    0. 简介 本文简要介绍一下比传统MergeSort更高效的算法,在原来的算法Merge基础上,少发生一半拷贝.欢迎探讨,感谢阅读. 原文链接如下:http://loverszhaokai.com/p ...

  10. Django初级手册2-管理界面的使用及定制

    管理界面的使用 管理界面的URL,帐号和密码在第一次输入syncdb时建立 http://127.0.0.1:8000/admin/ 将app加入管理界面 编辑polls/admin.py from ...