K条最短路径算法(KSP, k-shortest pathes):Yen's Algorithm
参考:
K条最短路径算法:Yen's Algorithm
算法背景
K 最短路径问题是最短路径问题的扩展和变形。1959 年,霍夫曼(Hoffman) 和帕夫雷(Pavley)在论文中第一次提出k 最短路径问题。 k 最短路径问题通常包括两类:有限制的k 最短路问题和无限制的K 最短路问题。 前者要求最短路径集合不含有回路,而后者对所求得的最短路径集合无限制。
算法简介
Yen's算法是Yen 在1971 年提出的以其名字命名 的Yen 算法。Yen's算法采用了递推法中的偏离路径算法思想,适用于非负权边的有向无环图结构。
算法思想
算法可分为两部分,算出第1条最短路径P(1),然后在此基础上依次依次算出其他的K-1条最短路径。在求P(i+1) 时,将P(i)上除了终止节点外的所有节点都视为偏离节点,并计算每个偏离节点到终止节点的最短路径,再与之前的P(i)上起始节点到偏离节点的路径拼接,构成候选路径,进而求得最短偏离路径。
算法实例:
根据个人的理解,我归纳出了以下步骤:
调用K条最短路径算法,源C,目的H,K为3。B为偏离路径集合。
1.通过Dijkstra算法计算得到最短路径A^1
:C-E-F-H
,其中,花费为5,A[1] = C-E-F-H
;
2.将A[1]作为迭代路径,进行第一次迭代:
(1)以部分迭代路径(即A[1])C
路径中,C点为起点,将C-E
路径之间的权值设为无穷大,进行一次Dijkstra,得到路径A^2-1
:C-D-F-H
,花费为8,将A^2-1
路径加入B;
(2)以部分迭代路径(即A[1])C-E
路径中,E为起点,将E-F
路径之间的权值设为无穷大,进行一次Dijkstra,得到路径A^2-2
:C-E-G-H
,花费为7,将A^2-2
路径加入B;
(3)以部分迭代路径(即A[1])C-E-F
路径中,F为起点,将F-H
路径之间的权值设为无穷大,进行一次Dijkstra,得到路径A^2-3
:C-E-F-G-H
,花费为8,将A^2-3
路径加入B;
迭代完成,B集合中有三条路径:C-D-F-H
,C-E-G-H
,C-E-F-G-H
;选出花费最小的偏离路径C-E-G-H
,A[2] = C-E-G-H
,移出B集合。
3.将A[2]作为迭代路径,进行第二次迭代:
(1)以部分迭代路径(即A[2])C
路径中,C点为起点,将C-E
路径之间的权值设为无穷大,进行一次Dijkstra,得到路径A^3-1
:C-D-F-H
,但B集合已存在该路径,故不存在偏移路径;
(2)以部分迭代路径(即A[2])C-E
路径中,E点为起点,将E-G
、E-F
路径之间的权值设为无穷大 (注意,这里设置两条路径的权值原因是这两条路径分别存在于A[1]和A[2]中),进行一次Dijkstra,得到路径A^3-2
:C-E-D-F-H
,花费为8,将A^3-2
加入B;
(3)以部分迭代路径(即A[2])C-E-G
路径中,G点为起点,将C-H
路径之间的权值设为无穷大,不存在偏移路径。
迭代完成,B集合中有三条路径:C-D-F-H
,C-E-F-G-H
,C-E-D-F-H
;由于三条路径花费均为8,则根据最小节点数进行判断,选出偏离路径C-D-F-H
,A[3] = C-D-F-H
。
此时,选出了三条最短路径,分别是:
A[1] = C-E-F-H
A[2] = C-E-G-H
A[3] = C-D-F-H
算法结束。以上过程均为个人理解,如果出现了偏差,请大家指出,谢谢!
算法实现
可以参考Github中的一个使用python实现KSP算法的repo:Yen's K-Shortest Path Algorithm
2017.8
K条最短路径算法(KSP, k-shortest pathes):Yen's Algorithm的更多相关文章
- 算法基础~链表~排序链表的合并(k条)
算法基础~链表~排序链表的合并(k条) 1,题意:已知k个已排序链表头结点指针,将这k个链表合并,合并后仍然为有序的,返回合并后的头结点. 2,方法之间时间复杂度的比较: 方法1(借助工具vector ...
- POJ 2449 Remmarguts' Date (K短路 A*算法)
题目链接 Description "Good man never makes girls wait or breaks an appointment!" said the mand ...
- JAVA之单源最短路径(Single Source Shortest Path,SSSP问题)dijkstra算法求解
题目简介:给定一个带权有向图,再给定图中一个顶点(源点),求该点到其他所有点的最短距离,称为单源最短路径问题. 如下图,求点1到其他各点的最短距离 准备工作:以下为该题所需要用到的数据 int N; ...
- A*算法——第K短路
例题 JZOJ senior 1163第K短路 题目描述 Bessie 来到一个小农场,有时她想回老家看看她的一位好友.她不想太早地回到老家,因为她喜欢途中的美丽风景.她决定选择K短路径,而不是最短路 ...
- bellman-ford算法求K短路O(n*m),以及判负环O(n*m)
#include<iostream> #include<algorithm> #include<cstring> using namespace std; cons ...
- poj2449 (第k条最短路)
题意:求n个点中,a到b的第k条最短路 思路: 用最短路求出估价函数的h,再在搜索过程中记录g,利用A*求出 最开始想到的便是A*和最短路,但是脑子抽了,居然一个一个去求- -,TL了后才发现可以倒着 ...
- 机器学习——KNN算法(k近邻算法)
一 KNN算法 1. KNN算法简介 KNN(K-Nearest Neighbor)工作原理:存在一个样本数据集合,也称为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分 ...
- 【POJ】2449.Remmarguts' Date(K短路 n log n + k log k + m算法,非A*,论文算法)
题解 (搬运一个原来博客的论文题) 抱着板题的心情去,结果有大坑 就是S == T的时候也一定要走,++K 我发现按照论文写得\(O(n \log n + m + k \ log k)\)算法没有玄学 ...
- POJ 2449 Remmarguts' Date ( 第 k 短路 && A*算法 )
题意 : 给出一个有向图.求起点 s 到终点 t 的第 k 短路.不存在则输出 -1 #include<stdio.h> #include<string.h> #include ...
随机推荐
- 【spring mvc】springmvc在tomcat中的执行过程
一.WEB容器在启动时,它会为每个WEB应用程序都创建一个对应的ServletContext对象(每个web应用程序唯一),它代表当前web应用web容器提供其一个全局的上下文环境,其为后面的spri ...
- union 类型(即sum types)在golang语言中的实现
http://www.jerf.org/iri/post/2917 Sum Types in Go posted Jun 02, 2013 in Programming, Golang, Haskel ...
- Iterator源码解读
//继承关系 public interface Inteator { boolean hasNext(); Object next(); } public interface Iterable { I ...
- hdu1166敌兵布阵&&hdu1754I Hate It(线段树入门)
单点更新是最最基础的线段树,只更新叶子节点,然后把信息用pushup这个函数更新上来. http://acm.hdu.edu.cn/showproblem.php?pid=1166 update单点更 ...
- [LeetCode] 221. Maximal Square _ Medium Tag: Dynamic Programming
Given a 2D binary matrix filled with 0's and 1's, find the largest square containing only 1's and re ...
- 共用tableview一个继承类里面有
里面的复用cell会不会混在一起呢?
- iOS开发--沙盒
IOS中的沙盒机制(SandBox)是一种安全体系,它规定了应用程序只能在为该应用创建的文件夹内读取文件,不可以访问其他地方的内容.所有的非代码文件都保存在这个地方,比如图片.声音.属性列表和文本文件 ...
- C# 实现屏幕截屏
//屏幕宽 int iWidth = Screen.PrimaryScreen.Bounds.Width; //屏幕高 int iHe ...
- Filter—过滤器和拦截器的区别
1.首先要明确什么是拦截器.什么是过滤器 1.1 什么是拦截器: 拦截器,在AOP(Aspect-Oriented Programming)中用于在某个方法或字段被访问之前,进行拦截然后在之前或之后加 ...
- zw版【转发·台湾nvp系列Delphi例程】HALCON HomMat2dRotate1
zw版[转发·台湾nvp系列Delphi例程]HALCON HomMat2dRotate1 procedure TForm1.Button1Click(Sender: TObject);var img ...