题目链接:点击传送
D. Powerful array
time limit per test

5 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

An array of positive integers a1, a2, ..., an is given. Let us consider its arbitrary subarray al, al + 1..., ar, where 1 ≤ l ≤ r ≤ n. For every positive integer s denote by Ks the number of occurrences of s into the subarray. We call the power of the subarray the sum of products Ks·Ks·s for every positive integer s. The sum contains only finite number of nonzero summands as the number of different values in the array is indeed finite.

You should calculate the power of t given subarrays.

Input

First line contains two integers n and t (1 ≤ n, t ≤ 200000) — the array length and the number of queries correspondingly.

Second line contains n positive integers ai (1 ≤ ai ≤ 106) — the elements of the array.

Next t lines contain two positive integers lr (1 ≤ l ≤ r ≤ n) each — the indices of the left and the right ends of the corresponding subarray.

Output

Output t lines, the i-th line of the output should contain single positive integer — the power of the i-th query subarray.

Please, do not use %lld specificator to read or write 64-bit integers in C++. It is preferred to use cout stream (also you may use %I64d).

Examples
input
3 2
1 2 1
1 2
1 3
output
3
6
input
8 3
1 1 2 2 1 3 1 1
2 7
1 6
2 7
output
20
20
20
Note

Consider the following array (see the second sample) and its [2, 7] subarray (elements of the subarray are colored):

Then K1 = 3, K2 = 2, K3 = 1, so the power is equal to 32·1 + 22·2 + 12·3 = 20.

莫队板子题;

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<set>
#include<map>
using namespace std;
#define ll long long
#define pi (4*atan(1.0))
#define eps 1e-14
#define bug(x) cout<<"bug"<<x<<endl;
const int N=2e5+,M=1e6+,inf=;
const ll INF=1e18+,mod=1e9+;
/// 数组大小
int pos[N],k,a[N],ji[M];
struct is
{
int l,r,p;
bool operator <(const is &b)const
{
if(pos[l]==pos[b.l])
return r<b.r;
return pos[l]<pos[b.l];
}
}s[N];
ll ans;
void add(int x)
{
ans-=1LL*ji[a[x]]*ji[a[x]]*a[x];
ji[a[x]]++;
ans+=1LL*ji[a[x]]*ji[a[x]]*a[x];
}
void del(int x)
{
ans-=1LL*ji[a[x]]*ji[a[x]]*a[x];
ji[a[x]]--;
ans+=1LL*ji[a[x]]*ji[a[x]]*a[x];
}
ll out[N];
int main()
{
int n,q;
scanf("%d%d",&n,&q);
k=sqrt(n);
for(int i=;i<=n;i++)
scanf("%d",&a[i]),pos[i]=(i-)/k+;
for(int i=;i<=q;i++)
scanf("%d%d",&s[i].l,&s[i].r),s[i].p=i;
sort(s+,s++q);
int L=,R=;
for(int i=;i<=q;i++)
{
while(L<s[i].l)
{
del(L);
L++;
}
while(L>s[i].l)
{
L--;
add(L);
}
while(R>s[i].r)
{
del(R);
R--;
}
while(R<s[i].r)
{
R++;
add(R);
}
out[s[i].p]=ans;
}
for(int i=;i<=q;i++)
printf("%lld\n",out[i]);
return ;
}

Yandex.Algorithm 2011 Round 2 D. Powerful array 莫队的更多相关文章

  1. CodeForces 86D(Yandex.Algorithm 2011 Round 2)

    思路:莫队算法,离线操作,将所有询问的左端点进行分块(分成sqrt(n) 块每块sqrt(n)个),用左端点的块号进行排序小的在前,块号相等的,右端点小的在前面. 这样要是两个相邻的查询在同一块内左端 ...

  2. D. Powerful array 莫队算法或者说块状数组 其实都是有点优化的暴力

    莫队算法就是优化的暴力算法.莫队算法是要把询问先按左端点属于的块排序,再按右端点排序.只是预先知道了所有的询问.可以合理的组织计算每个询问的顺序以此来降低复杂度. D. Powerful array ...

  3. CodeForces - 86D D. Powerful array —— 莫队算法

    题目链接:http://codeforces.com/problemset/problem/86/D D. Powerful array time limit per test 5 seconds m ...

  4. codeforces 86D D. Powerful array(莫队算法)

    题目链接: D. Powerful array time limit per test 5 seconds memory limit per test 256 megabytes input stan ...

  5. CodeForces 86 D Powerful array 莫队

    Powerful array 题意:求区间[l, r] 内的数的出现次数的平方 * 该数字. 题解:莫队离线操作, 然后加减位置的时候直接修改答案就好了. 这个题目中发现了一个很神奇的事情,本来数组开 ...

  6. Codeforces 86D - Powerful array(莫队算法)

    题目链接:http://codeforces.com/problemset/problem/86/D 题目大意:给定一个数组,每次询问一个区间[l,r],设cnt[i]为数字i在该区间内的出现次数,求 ...

  7. [Codeforces86D]Powerful array(莫队算法)

    题意:定义K[x]为元素x在区间[l,r]内出现的次数,那么它的贡献为K[x]*K[x]*x 给定一个序列,以及一些区间询问,求每个区间的贡献 算是莫队算法膜版题,不带修改的 Code #includ ...

  8. codeforces 86D,Powerful array 莫队

    传送门:https://codeforces.com/contest/86/problem/D 题意: 给你n个数,m次询问,每次询问问你在区间l,r内每个数字出现的次数的平方于当前这个数的乘积的和 ...

  9. Yandex.Algorithm 2011 Round 1 D. Sum of Medians 线段树

    题目链接: Sum of Medians Time Limit:3000MSMemory Limit:262144KB 问题描述 In one well-known algorithm of find ...

随机推荐

  1. Comparable和Comparator的使用

    1:对象实现Comparable, 那么对象就具有了比较功能 package comparableAndComparator; import java.util.Collections; import ...

  2. openstack部署心得

    官方文档:https://docs.openstack.org/ 个别版本有中文 不要轻易尝试最新版本 新版本刚推出一般存在不少BUG或者文档没有更新,按照文档配置就是不能成功.推荐尝试最新版本的上一 ...

  3. 深度学习Momentum(动量方法)

    转自:http://blog.csdn.net/bvl10101111/article/details/72615621 先上结论: 1.动量方法主要是为了解决Hessian矩阵病态条件问题(直观上讲 ...

  4. sklearn_SVM

    一.用SVM实现二分类: 支持向量机分类器,是在数据空间中找出一个超平面作为决策边界,利用这个决策边界来对数据进行分类,并使分类误差尽量小的模型                             ...

  5. jxl(Java Excel API) 使用方法 【2】

    JAVA EXCEL API简介 Java Excel是一开放源码项目,通过它Java开发人员可以读取Excel文件的内容.创建新的Excel文件.更新已经存在的Excel文件.使用该 API非Win ...

  6. iOS UI基础-4.2应用程序管理 Xib文件使用

    Xib调整使用 1.新建xib文件 New File-->User Interface-->Empty 2.打开新建的xib文件,出现可视化窗口 (1)拖入一个UIView (不是UIVi ...

  7. JAVA如何调用mysql写的存储过程

    存储过程是干什么的,自己百度,百度上讲的比我讲的好.为什么要用存储过程,这样可以提高效率.废话少说,直接上代码: 首先说一下语法:在mysql中写存储过程 DELIMITER $$ CREATE /* ...

  8. JSON—基础

    什么是JSON?(JavaScript Object Notation) 1:一种轻量级的数据交换格式 2:采用独立于语言的文本格式 3:常用于客户端和服务器之间传递数据(以对象的形式传递) JSON ...

  9. MFC六大核心机制之五、六:消息映射和命令传递

    作为C++程序员,我们总是希望自己程序的所有代码都是自己写出来的,如果使用了其他的一些库,也总是千方百计想弄清楚其中的类和函数的原理,否则就会感觉不踏实.所以,我们对于在进行MFC视窗程序设计时经常要 ...

  10. mysql count group by统计条数方法

    mysql count group by统计条数方法 mysql 分组之后如何统计记录条数? gourp by 之后的 count,把group by查询结果当成一个表再count一次select c ...