题目链接:点击传送
D. Powerful array
time limit per test

5 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

An array of positive integers a1, a2, ..., an is given. Let us consider its arbitrary subarray al, al + 1..., ar, where 1 ≤ l ≤ r ≤ n. For every positive integer s denote by Ks the number of occurrences of s into the subarray. We call the power of the subarray the sum of products Ks·Ks·s for every positive integer s. The sum contains only finite number of nonzero summands as the number of different values in the array is indeed finite.

You should calculate the power of t given subarrays.

Input

First line contains two integers n and t (1 ≤ n, t ≤ 200000) — the array length and the number of queries correspondingly.

Second line contains n positive integers ai (1 ≤ ai ≤ 106) — the elements of the array.

Next t lines contain two positive integers lr (1 ≤ l ≤ r ≤ n) each — the indices of the left and the right ends of the corresponding subarray.

Output

Output t lines, the i-th line of the output should contain single positive integer — the power of the i-th query subarray.

Please, do not use %lld specificator to read or write 64-bit integers in C++. It is preferred to use cout stream (also you may use %I64d).

Examples
input
3 2
1 2 1
1 2
1 3
output
3
6
input
8 3
1 1 2 2 1 3 1 1
2 7
1 6
2 7
output
20
20
20
Note

Consider the following array (see the second sample) and its [2, 7] subarray (elements of the subarray are colored):

Then K1 = 3, K2 = 2, K3 = 1, so the power is equal to 32·1 + 22·2 + 12·3 = 20.

莫队板子题;

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<set>
#include<map>
using namespace std;
#define ll long long
#define pi (4*atan(1.0))
#define eps 1e-14
#define bug(x) cout<<"bug"<<x<<endl;
const int N=2e5+,M=1e6+,inf=;
const ll INF=1e18+,mod=1e9+;
/// 数组大小
int pos[N],k,a[N],ji[M];
struct is
{
int l,r,p;
bool operator <(const is &b)const
{
if(pos[l]==pos[b.l])
return r<b.r;
return pos[l]<pos[b.l];
}
}s[N];
ll ans;
void add(int x)
{
ans-=1LL*ji[a[x]]*ji[a[x]]*a[x];
ji[a[x]]++;
ans+=1LL*ji[a[x]]*ji[a[x]]*a[x];
}
void del(int x)
{
ans-=1LL*ji[a[x]]*ji[a[x]]*a[x];
ji[a[x]]--;
ans+=1LL*ji[a[x]]*ji[a[x]]*a[x];
}
ll out[N];
int main()
{
int n,q;
scanf("%d%d",&n,&q);
k=sqrt(n);
for(int i=;i<=n;i++)
scanf("%d",&a[i]),pos[i]=(i-)/k+;
for(int i=;i<=q;i++)
scanf("%d%d",&s[i].l,&s[i].r),s[i].p=i;
sort(s+,s++q);
int L=,R=;
for(int i=;i<=q;i++)
{
while(L<s[i].l)
{
del(L);
L++;
}
while(L>s[i].l)
{
L--;
add(L);
}
while(R>s[i].r)
{
del(R);
R--;
}
while(R<s[i].r)
{
R++;
add(R);
}
out[s[i].p]=ans;
}
for(int i=;i<=q;i++)
printf("%lld\n",out[i]);
return ;
}

Yandex.Algorithm 2011 Round 2 D. Powerful array 莫队的更多相关文章

  1. CodeForces 86D(Yandex.Algorithm 2011 Round 2)

    思路:莫队算法,离线操作,将所有询问的左端点进行分块(分成sqrt(n) 块每块sqrt(n)个),用左端点的块号进行排序小的在前,块号相等的,右端点小的在前面. 这样要是两个相邻的查询在同一块内左端 ...

  2. D. Powerful array 莫队算法或者说块状数组 其实都是有点优化的暴力

    莫队算法就是优化的暴力算法.莫队算法是要把询问先按左端点属于的块排序,再按右端点排序.只是预先知道了所有的询问.可以合理的组织计算每个询问的顺序以此来降低复杂度. D. Powerful array ...

  3. CodeForces - 86D D. Powerful array —— 莫队算法

    题目链接:http://codeforces.com/problemset/problem/86/D D. Powerful array time limit per test 5 seconds m ...

  4. codeforces 86D D. Powerful array(莫队算法)

    题目链接: D. Powerful array time limit per test 5 seconds memory limit per test 256 megabytes input stan ...

  5. CodeForces 86 D Powerful array 莫队

    Powerful array 题意:求区间[l, r] 内的数的出现次数的平方 * 该数字. 题解:莫队离线操作, 然后加减位置的时候直接修改答案就好了. 这个题目中发现了一个很神奇的事情,本来数组开 ...

  6. Codeforces 86D - Powerful array(莫队算法)

    题目链接:http://codeforces.com/problemset/problem/86/D 题目大意:给定一个数组,每次询问一个区间[l,r],设cnt[i]为数字i在该区间内的出现次数,求 ...

  7. [Codeforces86D]Powerful array(莫队算法)

    题意:定义K[x]为元素x在区间[l,r]内出现的次数,那么它的贡献为K[x]*K[x]*x 给定一个序列,以及一些区间询问,求每个区间的贡献 算是莫队算法膜版题,不带修改的 Code #includ ...

  8. codeforces 86D,Powerful array 莫队

    传送门:https://codeforces.com/contest/86/problem/D 题意: 给你n个数,m次询问,每次询问问你在区间l,r内每个数字出现的次数的平方于当前这个数的乘积的和 ...

  9. Yandex.Algorithm 2011 Round 1 D. Sum of Medians 线段树

    题目链接: Sum of Medians Time Limit:3000MSMemory Limit:262144KB 问题描述 In one well-known algorithm of find ...

随机推荐

  1. Django-form组件和ModelForm组件

    一. 构建Form表单 通过建一个类,添加需要进行验证的form字段,继而添加验证条件 from django import forms from django.forms import widget ...

  2. Qt 布局管理器

    在一个颜值当道的今天,无论买衣服,买车还是追星,颜值的高低已经变成了大家最看重的(不管男性女性都一样,千万别和我说你不是):而对于程序猿来说,开发一款软件,不再只注重逻辑和稳定性,美观和用户友好性也是 ...

  3. virtualBox虚拟机联网

    1. 2. 3. 4. 5. 6. 7. 8. 9. 10.

  4. liferay项目经验之BasePortlet

    package com.ebizwindow.crm.portlet.base; import java.io.IOException; import java.io.InputStream; imp ...

  5. mysql buffer

    php与mysql的连接有三种方式,mysql,mysqli,pdo.不管使用哪种方式进行连接,都有使用buffer和不使用buffer的区别. 什么叫使用buffer和不使用buffer呢? 客户端 ...

  6. json 的相互 转换

    using System.Runtime.Serialization.Json; //json 转化为List集合 public List<T> JSONStringToList<T ...

  7. animation-play-state

    animation-play-state: css: .play-state{ -webkit-animation:f1 2s 0.5s infinite linear forwards altern ...

  8. cocoapods 配置

    二.CocoaPods 安装 CocoaPods可以方便地通过Mac自带的RubyGems安装. 打开Terminal(Mac电脑自带的终端): (1).设置ruby的软件源 这是因为ruby的软件源 ...

  9. JSON语法2

    把 JSON 文本转换为 JavaScript 对象 JSON 最常见的用法之一,是从 web 服务器上读取 JSON 数据(作为文件或作为 HttpRequest),将 JSON 数据转换为 Jav ...

  10. python 换行符的识别问题,Unix 和Windows 中是不一样的

    关于换行符的识别问题,在Unix 和Windows 中是不一样的(分别是n 和rn).默认情况下,Python 会以统一模式处理换行符.这种模式下,在读取文本的时候,Python 可以识别所有的普通换 ...