一、函数意义:

1、tf.Variable() 变量

W = tf.Variable(<initial-value>, name=<optional-name>)

用于生成一个初始值为initial-value的变量。必须指定初始化值

x = tf.Variable()

x.initializer          # 初始化单个变量

x.value()              # 读取op

x.assign()             # 写入op

x.assign_add()         # 更多op

x.eval()               # 输出变量内容

2、tf.get_variable()  共享变量

原函数:

tf.get_variable(
name,
shape=None,
dtype=None,
initializer=None,
regularizer=None,
trainable=None,
collections=None,
caching_device=None,
partitioner=None,
validate_shape=True,
use_resource=None,
custom_getter=None,
constraint=None,
synchronization=tf.VariableSynchronization.AUTO,
aggregation=tf.VariableAggregation.NONE
)
例如:
W = tf.get_variable(name, shape=None, dtype=tf.float32, initializer=None,
regularizer=None, trainable=True, collections=None)

获取已存在的变量(要求不仅名字,而且初始化方法等各个参数都一样),如果不存在,就新建一个。 
可以用各种初始化方法,不用明确指定值。

3、tf.placeholder() 传入变量

原函数:

tf.placeholder(dtype, shape=None, name=None)

placeholder 是 Tensorflow 中的占位符,暂时储存变量.

Tensorflow 如果想要从外部传入data, 那就需要用到 tf.placeholder(), 然后以这种形式传输数据

sess.run(***, feed_dict={input: **}).

4、tf.constant() 常量(保存模型的时候也会保存这个常量)

原函数:

tf.constant(
value,
dtype=None,
shape=None,
name='Const',
verify_shape=False
)

二、函数对比:

tf.Variable() 和 tf.get_variable() 的区别

1. 初始化更方便

比如用xavier_initializer:

W = tf.get_variable("W", shape=[784, 256],
initializer=tf.contrib.layers.xavier_initializer())

2. 方便共享变量

因为tf.get_variable() 会检查当前命名空间下是否存在同样name的变量,可以方便共享变量。

tf.Variable 每次都会新建一个变量。

需要注意的是tf.get_variable() 要配合reusetf.variable_scope() 使用。

所以推荐使用tf.get_variable()

3、代码示例

在 Tensorflow 当中有两种途径生成变量 variable, 一种是 tf.get_variable(), 另一种是 tf.Variable(). 
  • 如果想要达到重复利用变量的效果, 我们就要使用 tf.variable_scope(), 并搭配 tf.get_variable()这种方式产生和提取变量.
  • 不像 tf.Variable() 每次都会产生新的变量, tf.get_variable() 如果遇到了同样名字的变量时, 它会单纯的提取这个同样名字的变量(避免产生新变量).
  • 而在重复使用的时候, 一定要在代码中强调 scope.reuse_variables(), 否则系统将会报错, 以为你只是单纯的不小心重复使用到了一个变量.
with tf.variable_scope("a_variable_scope") as scope:
initializer = tf.constant_initializer(value=3)
var3 = tf.get_variable(name='var3', shape=[1], dtype=tf.float32, initializer=initializer)
scope.reuse_variables()# 如果不写这句话,就会报错,明明重复,声明var3 下面还会使用
var3_reuse = tf.get_variable(name='var3',)
var4 = tf.Variable(name='var4', initial_value=[4], dtype=tf.float32)
var4_reuse = tf.Variable(name='var4', initial_value=[4], dtype=tf.float32) with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
print(var3.name) # a_variable_scope/var3:0
print(sess.run(var3)) # [ 3.]
print(var3_reuse.name) # a_variable_scope/var3:0
print(sess.run(var3_reuse)) # [ 3.]
print(var4.name) # a_variable_scope/var4:0
print(sess.run(var4)) # [ 4.]
print(var4_reuse.name) # a_variable_scope/var4_1:0
print(sess.run(var4_reuse)) # [ 4.]

4、tf.name_scope() 和 tf.variable_scope()  对比

来源莫烦:https://morvanzhou.github.io/tutorials/machine-learning/tensorflow/5-12-scope/

import tensorflow as tf

with tf.name_scope("a_name_scope"):
initializer = tf.constant_initializer(value=1)
var1 = tf.get_variable(name='var1', shape=[1], dtype=tf.float32, initializer=initializer)
var2 = tf.Variable(name='var2', initial_value=[2], dtype=tf.float32)
var21 = tf.Variable(name='var2', initial_value=[2.1], dtype=tf.float32)
var22 = tf.Variable(name='var2', initial_value=[2.2], dtype=tf.float32) with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
print(var1.name) # var1:0
print(sess.run(var1)) # [ 1.]
print(var2.name) # a_name_scope/var2:0
print(sess.run(var2)) # [ 2.]
print(var21.name) # a_name_scope/var2_1:0
print(sess.run(var21)) # [ 2.0999999]
print(var22.name) # a_name_scope/var2_2:0
print(sess.run(var22)) # [ 2.20000005]
可以看出使用 tf.Variable() 定义的时候, 虽然 name 都一样, 但是为了不重复变量名, Tensorflow 输出的变量名并不是一样的. 
所以, 本质上 var2, var21, var22 并不是一样的变量. 而另一方面, 使用tf.get_variable()定义的变量不会被tf.name_scope()当中的名字所影响.

5、训练和测试时参数复用

让 train_rnn 和 test_rnn 在同一个 tf.variable_scope('rnn') 之下,并且定义 scope.reuse_variables(), 使我们能把 train_rnn 的所有 weights, biases 参数全部绑定到 test_rnn 中.

这样,不管两者的 time_steps 有多不同, 结构有多不同, train_rnn W, b 参数更新成什么样, test_rnn 的参数也更新成什么样.

with tf.variable_scope('rnn') as scope:
sess = tf.Session()
train_rnn = RNN(train_config)
scope.reuse_variables()# 这句话表示,所有训练中的参数,在测试中都能使用,如果不写,会报错
test_rnn = RNN(test_config)
sess.run(tf.global_variables_initializer())

三、初始化变量:

初始化所有变量:

init = tf.global_variables_initializer() 

with tf.Session() as sess:
sess.run(init)

初始化一个变量子集:

init_ab = tf.variables_initializer([a, b], name = "init_ab")

with tf.Session() as sess:
sess.run(init_ab)

初始化单个变量:

W = tf.Variable(tf.zeros([784, 10])) 

with tf.Session() as sess:
sess.run(W.initializer)

随机数,生成器:

函数名 随机数分布 主要参数
tf.random_normal 正态分布 平均值、标准差、取值类型
tf.truncated_normal 正态分布,如果随机数偏离均值超过2个标准差,就重新随机 平均值、标准差、取值类型
tf.random_uniform 平均分布 最小值、最大值、取值类型
tf.random_gamma gamma分布 形状参数alpha、尺度参数beta、取值类型

tensorflow 笔记12:函数区别:placeholder,variable,get_variable,参数共享的更多相关文章

  1. Python 学习笔记12 函数模块

    函数的优点之一,使用它们可将代码块与主程序分离.通过给函数指定描述性的名称.可以让主程序非常好理解.但是如果将过多的函数和主程序放置在一起,会让文件显得非常凌乱.太多的代码混杂在一起,不方便管理.我们 ...

  2. [吴恩达机器学习笔记]12支持向量机2 SVM的正则化参数和决策间距

    12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.2 大间距的直观理解- Large Margin I ...

  3. (四) tensorflow笔记:常用函数说明

    tensorflow笔记系列: (一) tensorflow笔记:流程,概念和简单代码注释 (二) tensorflow笔记:多层CNN代码分析 (三) tensorflow笔记:多层LSTM代码分析 ...

  4. tensorflow中常量(constant)、变量(Variable)、占位符(placeholder)和张量类型转换reshape()

    常量 constant tf.constant()函数定义: def constant(value, dtype=None, shape=None, name="Const", v ...

  5. tensorflow学习之路---Session、Variable(变量)和placeholder

    ---恢复内容开始--- 1.Session '''Session.run():首先里面的参数是一个API(函数的接口)的返回值或者是指定参数的值:功能:得知运算结果有两种访问方式:直接建立或者运用w ...

  6. tensorflow笔记:多层LSTM代码分析

    tensorflow笔记:多层LSTM代码分析 标签(空格分隔): tensorflow笔记 tensorflow笔记系列: (一) tensorflow笔记:流程,概念和简单代码注释 (二) ten ...

  7. tensorflow笔记(四)之MNIST手写识别系列一

    tensorflow笔记(四)之MNIST手写识别系列一 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7436310.html ...

  8. TensorFlow笔记-06-神经网络优化-损失函数,自定义损失函数,交叉熵

    TensorFlow笔记-06-神经网络优化-损失函数,自定义损失函数,交叉熵 神经元模型:用数学公式比表示为:f(Σi xi*wi + b), f为激活函数 神经网络 是以神经元为基本单位构成的 激 ...

  9. tensorflow笔记:多层CNN代码分析

    tensorflow笔记系列: (一) tensorflow笔记:流程,概念和简单代码注释 (二) tensorflow笔记:多层CNN代码分析 (三) tensorflow笔记:多层LSTM代码分析 ...

随机推荐

  1. python 多线程和多进程

    多线程与多进程 知识预览 一 进程与线程的概念 二 threading模块 三 multiprocessing模块 四 协程 五 IO模型 回到顶部 一 进程与线程的概念 1.1 进程 考虑一个场景: ...

  2. Pandas 学习记录(一)

    1.DataFrame 按照列和按照行进行索引数据 按照列索引 df[’column_name’] 按照行索引 df.loc[’row_key’] 或 df.iloc[index] 2.先行后列索引单 ...

  3. Shell脚本笔记(七)控制Shell脚本

    控制Shell脚本 一.处理信号 1) SIGHUP本信号在用户终端连接(正常或非正常)结束时发出, 通常是在终端的控制进程结束时, 通知同一session内的各个作业, 这时它们与控制终端不再关联. ...

  4. 潭州课堂25班:Ph201805201 django 项目 第二十二课 文章主页 新闻列表页面滚动加载,轮播图后台实现 (课堂笔记)

    新建static/js/news/index.js文件 ,主要用于向后台发送请求, // 新建static/js/news/index.js文件 $(function () { // 新闻列表功能 l ...

  5. Python特色数据类型(列表)(上)

    Python从零开始系列连载(9)——Python特色数据类型(列表)(上) 原创 2017-10-07 王大伟 Python爱好者社区 列表 列表,可以是这样的: 分享了一波我的网易云音乐列表 今天 ...

  6. sqlserver的like '%xxx%'优化,全文索引

    2000万行的数据表,首先对Address字段做'%xxx%'模糊查询 这是估计的查询计划 这是估计的实际查询结果,用了37秒才查询完成 还是之前的数据,但是这一次使用'xxx%'来做查询,现在还没有 ...

  7. VueJs记录

    v-model是双向绑定,v-bind用来绑定属性,也可以简写成为:

  8. MDK错误 Error: L6218E: Undefined symbol SystemInit (referred from startup_stm32f10x_hd.o). 解决方法

    此错误产生的位置在STM32工程所包含的汇编启动代码文件,如下图 熟悉ARM汇编的朋友一定可以看出,这是一个子程序调用语句,而调用的子程序正是SystemInit.出现错误的原因就是汇编器没有在代码之 ...

  9. 编程菜鸟的日记-初学尝试编程-C++ Primer Plus 第4章编程练习4

    #include <iostream>#include <string>using namespace std;int main(){ string fname; string ...

  10. Java weak reference

    一个对象被回收,必须满足两个条件: 没有任何引用指向它和GC在运行.把所有指向某个对象的引用置空来保证这个对象在下次GC运行时被回收. Object c = new Car(); c = null; ...