MT【226】费马点两题
已知$z_1=2\sqrt{3}i,z_2=3,z_3=-3,|z_3-z_4|=2\sqrt{3},$则$|z_1-z_4|+|z_2-z_4|$的最小值为_____
提示:费马点最小,取$Z_4(0,\sqrt{3})$为$\Delta Z_1Z_2Z_3$的费马点. 此时$|z_3-z_4|=2\sqrt{3}$
故$|z_1-z_4|+|z_2-z_4|\ge3\sqrt{3}$
注:只有这些很对称特殊的点的费马点可以坐标写出,一般的已知三个点的坐标求费马点的坐标的公式没有.
练习:设$z$为复数,$k$为实数,且$|z+2016|+|z+2017+ki|+|z+2018|$的最小值为$\sqrt{3}+1$则$k=$_____
提示:费马点,记$A(-2016,0),B(-2017,-k),C(-2018,0)$令$\angle{CZA}=120^{o}$
则$|BZ|=\sqrt{3}+1-\dfrac{2}{\sqrt{3}}*2=|k|-\dfrac{1}{\sqrt{3}}$得,$k=\pm 1$
MT【226】费马点两题的更多相关文章
- MT【249】离心率两题
椭圆$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1,(a>b>0)$的一个焦点为$F$,过$F$的直线交椭圆于$A,B$两点,$M$是点$A$关于原点的对称点.若 ...
- 2014多校第一场 I 题 || HDU 4869 Turn the pokers(费马小定理+快速幂模)
题目链接 题意 : m张牌,可以翻n次,每次翻xi张牌,问最后能得到多少种形态. 思路 :0定义为反面,1定义为正面,(一开始都是反), 对于每次翻牌操作,我们定义两个边界lb,rb,代表每次中1最少 ...
- hdu 4704 Sum (整数和分解+快速幂+费马小定理降幂)
题意: 给n(1<n<),求(s1+s2+s3+...+sn)mod(1e9+7).其中si表示n由i个数相加而成的种数,如n=4,则s1=1,s2=3. ...
- poj 3734 Blocks 快速幂+费马小定理+组合数学
题目链接 题意:有一排砖,可以染红蓝绿黄四种不同的颜色,要求红和绿两种颜色砖的个数都是偶数,问一共有多少种方案,结果对10007取余. 题解:刚看这道题第一感觉是组合数学,正向推了一会还没等推出来队友 ...
- 数论初步(费马小定理) - Happy 2004
Description Consider a positive integer X,and let S be the sum of all positive integer divisors of 2 ...
- 【BZOJ1951】【SDOI2010】古代猪文 Lucas定理、中国剩余定理、exgcd、费马小定理
Description “在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心……” ——选自猪王国民歌 很久很久以前,在山的那边 ...
- 费马小定理&欧拉定理
在p是素数的情况下,对任意整数x都有xp≡x(mod p).这个定理被称作费马小定理其中如果x无法被p整除,我们有xp-1≡1(mod p).利用这条性质,在p是素数的情况下,就很容易求出一个数的逆元 ...
- POJ 2420 A Star not a Tree? (计算几何-费马点)
A Star not a Tree? Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 3435 Accepted: 172 ...
- xdoj-1243 (费马平方和问题)
1243: CKJ老师爱数学 时间限制: 1 Sec 内存限制: 128 MB提交: 56 解决: 13[提交][状态][讨论版] 题目描述 众所周知,CKJ老师非常热爱数学,他对于方程组的有自己 ...
随机推荐
- sql 语言
sql 语言 DDL DDL 全称 Data Definition Language,即数据定义语言. DATABASE 创建数据库 CREATE DATABASE 语句用于创建数据库. CREATE ...
- Windows下jupyter notebook 修改打开的浏览器
1. 打开cmd,输入jupyter notebook --generate-config 2. 根据返回的路径打开 C:\Users\Administrator\.jupyter\jupyter_n ...
- HSF源码阅读
HSF各组成之间的关系 1 服务提供者注册与发布 <bean id="hsfTestService" class="com.test.service.impl.Hs ...
- 关于 CSLA 服务器部署WCF访问出错的问题
MDAA项目 在以前的项目中,只要部署,从来没有发生过 通过WCF访问出错的问题,但是此次却出现如下问题: 2018-04-21 13:45:39,744 [119] ERROR Galaxy.OTC ...
- Java 基础之一对象导论
对象导论 1.1 抽象过程 所有编程语言都提供抽象机制.人们所能解决的问题的复杂性直接取决于抽象的类型和质量. 汇编语言是对底层机器的轻微抽象. 我们将问题空间中的元素及其再解空间中的表示称为对象.这 ...
- 关于Win10下IE11只能以管理员身份运行的处理方式
今天无意间发现IE无法启动,后来研究发现只有用管理员身份运行才能打开,初步分析应该是用户权限的问题,在网上百度了一番,找到了处理的方法,在此分享一下 1.win+R 调出“运行”命令,输入“reged ...
- MongoDB日常运维操作命令小结
总所周知,MongoDB是一个NoSQL非数据库系统,即一个数据库可以包含多个集合(Collection),每个集合对应于关系数据库中的表:而每个集合中可以存储一组由列标识的记录,列是可以自由定义的, ...
- maven 第一个Web项目——HelloWorld
1.安装Maven,具体步骤,参照博客[maven的安装与配置]http://www.cnblogs.com/dyh004/p/8523260.html 2.配置阿里云为Maven中央仓库,具体步骤, ...
- KETTLE集群搭建
KETTLE集群搭建 说明: 本文档基于kettle5.4 一.集群的原理与优缺点 1.1集群的原理 Kettle集群是由一个主carte服务器和多个从carte服务器组成的,类似于master-sl ...
- 《蹭课神器》Alpha版使用说明
<蹭课神器>是一款方便大学生蹭课的软件,目前实现了查询课表的功能,还没有实现搜索和提醒的功能.有待进一步的开发! 登录之后点击查询操作,查询课表. 课表显示如下