luogu2542 航线规划 (树链剖分)
不会lct,所以只能树剖乱搞
一般这种删边的题都是离线倒着做,变成加边
他要求的结果其实就是缩点以后两点间的距离。
然后先根据最后剩下的边随便做出一个生成树,然后假装把剩下的边当成加边操作以后处理
这样的话,就可以做树剖来维护现在的两点间距离。
然后考虑加边,其实就是加了一条边然后某一处成环了,缩成了一个点。
这样的话,就可以把这条边两个端点间的距离都改成0,假装缩了点。
最后再倒着输出答案就行了。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<queue>
#include<map>
#include<cmath>
#define inf 0x3f3f3f3f
#define LL long long int
using namespace std;
const int maxn=,maxm=,maxq=; inline LL rd(){
LL x=;char c=getchar();int neg=;
while(c<''||c>''){if(c=='-') neg=-;c=getchar();}
while(c>=''&&c<='') x=x*+c-'',c=getchar();
return x*neg;
} struct Edge{
int a,b,ne;bool used,flag;
}eg[maxm*];
int N,M;
int egh[maxn],ect;
int que[maxq][],ans[maxq],qct;
int fa[maxn],dep[maxn],wson[maxn],siz[maxn],top[maxn],root[maxn],len[maxn];
int ch[maxn*][],val[maxn*],pct;
bool laz[maxn*];
map<int,int> mp; inline void adeg(int a,int b){
eg[ect].a=a;eg[ect].b=b;eg[ect].ne=egh[a];eg[ect].used=;egh[a]=ect++;
} inline void pushdown(int p){
if(!laz[p]) return;
val[ch[p][]]=val[ch[p][]]=laz[p]=;
laz[ch[p][]]=laz[ch[p][]]=;
}
inline void update(int p){pushdown(p);val[p]=val[ch[p][]]+val[ch[p][]];} void build(int &p,int l,int r){
p=++pct;
if(l==r) val[p]=;
else{
int m=l+r>>;
build(ch[p][],l,m);build(ch[p][],m+,r);
update(p);
}
} int query(int p,int l,int r,int x,int y){
if(x<=l&&r<=y) return val[p];
else{
pushdown(p);int m=l+r>>,re=;
if(x<=m) re+=query(ch[p][],l,m,x,y);
if(y>=m+) re+=query(ch[p][],m+,r,x,y);
return re;
}
} void change(int p,int l,int r,int x,int y){
if(x<=l&&r<=y){
val[p]=;laz[p]=;pushdown(p);
}else if(val[p]!=){
pushdown(p);int m=l+r>>;
if(x<=m) change(ch[p][],l,m,x,y);
if(y>=m+) change(ch[p][],m+,r,x,y);
update(p);
}
} void dfs1(int x){
siz[x]=;int ma=;
for(int i=egh[x];i!=-;i=eg[i].ne){
int b=eg[i].b;
if(!eg[i].used||dep[b]) continue;
eg[i].flag=eg[i^].flag=;
fa[b]=x;dep[b]=dep[x]+;
dfs1(b);siz[x]+=siz[b];
if(siz[b]>ma) ma=siz[b],wson[x]=b;
}
} void dfs2(int x){
if(x!=wson[fa[x]]){int d=;
for(int i=x;i;i=wson[i]) top[i]=x,d++;
build(root[x],,d);len[x]=d;
}for(int i=egh[x];i!=-;i=eg[i].ne){
int b=eg[i].b;
if(eg[i].flag&&fa[x]!=b) dfs2(b);
}
} void solveC(int x,int y){
while(top[x]!=top[y]){
if(dep[top[x]]<dep[top[y]]) swap(x,y);
change(root[top[x]],,len[top[x]],,dep[x]-dep[top[x]]+);x=fa[top[x]];
}if(x==y) return;
if(dep[x]>dep[y]) swap(x,y);
change(root[top[x]],,len[top[x]],dep[x]-dep[top[x]]+,dep[y]-dep[top[y]]+);
}
int solveQ(int x,int y){
int re=;
while(top[x]!=top[y]){ if(dep[top[x]]<dep[top[y]]) swap(x,y);
re+=query(root[top[x]],,len[top[x]],,dep[x]-dep[top[x]]+);x=fa[top[x]];
}if(x==y) return re;
if(dep[x]>dep[y]) swap(x,y);
return re+query(root[top[x]],,len[top[x]],dep[x]-dep[top[x]]+,dep[y]-dep[top[y]]+);
} int main(){
int i,j,k;
N=rd();M=rd();memset(egh,-,sizeof(egh));
for(i=;i<=M;i++){
int a=rd(),b=rd();
mp[a*N+b]=ect;adeg(a,b);
mp[b*N+a]=ect;adeg(b,a);
}while(++qct){
int a=rd();if(a==-) break;
int b=rd(),c=rd();
que[qct][]=a;que[qct][]=b;que[qct][]=c;
if(!a){
int x=mp[b*N+c];
eg[x].used=eg[x^].used=;
}
}dep[]=;dfs1();dfs2();
for(i=;i<ect;i++){
if((!eg[i].flag)&&eg[i].used) solveC(eg[i].a,eg[i].b);
}int act=;
for(i=qct-;i;i--){
if(!que[i][]) solveC(que[i][],que[i][]);
else ans[++act]=solveQ(que[i][],que[i][]);
}for(i=act;i;i--) printf("%d\n",ans[i]);
return ;
}
luogu2542 航线规划 (树链剖分)的更多相关文章
- BZOJ 1969: [Ahoi2005]LANE 航线规划( 树链剖分 )
首先我们要时光倒流, 倒着做, 变成加边操作维护关键边. 先随意搞出一颗树, 树上每条边都是关键边(因为是树, 去掉就不连通了)....然后加边(u, v)时, 路径(u, v)上的所有边都变成非关键 ...
- 【bzoj1959】[Ahoi2005]LANE 航线规划 树链剖分+线段树
题目描述 对Samuel星球的探险已经取得了非常巨大的成就,于是科学家们将目光投向了Samuel星球所在的星系——一个巨大的由千百万星球构成的Samuel星系. 星际空间站的Samuel II巨型计算 ...
- BZOJ 1969: [Ahoi2005]LANE 航线规划 [树链剖分 时间倒流]
题意: 一张图,删除边,求两点之间的割边数量.保证任意时刻图连通 任求一棵生成树,只有树边可能是割边 时间倒流,加入一条边,就是两点路径上的边都不可能是割边,区间覆盖... 然后本题需要把边哈希一下, ...
- bzoj1969 [Ahoi2005]LANE 航线规划 树链剖分
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=1969 题解 如果我们把整个图边双联通地缩点,那么最终会形成一棵树的样子. 那么在这棵树上,\( ...
- 洛谷 P2542 [AHOI2005]航线规划 树链剖分_线段树_时光倒流_离线
Code: #include <map> #include <cstdio> #include <algorithm> #include <cstring&g ...
- 【bzoj2402】陶陶的难题II 分数规划+树链剖分+线段树+STL-vector+凸包+二分
题目描述 输入 第一行包含一个正整数N,表示树中结点的个数.第二行包含N个正实数,第i个数表示xi (1<=xi<=10^5).第三行包含N个正实数,第i个数表示yi (1<=yi& ...
- 【BZOJ2402】陶陶的难题II 分数规划+树链剖分+线段树+凸包
题解: 首先分数规划是很明显的 然后在于我们如何要快速要求yi-mid*xi的最值 这个是看了题解之后才知道的 这个是斜率的一个基本方法 我们设y=mid*x+z 那么显然我们可以把(x,y)插入到一 ...
- bzoj1969: [Ahoi2005]LANE 航线规划(树链剖分)
只有删边,想到时间倒流. 倒着加边,因为保证图连通,所以一开始一定至少是一棵树.我们先建一棵树出来,对于每一条非树边,两个端点在树上这段路径的边就不会变成关键边了,所以将它们对答案的贡献删去,那么直接 ...
- [BZOJ2402]陶陶的难题II(树链剖分+线段树维护凸包+分数规划)
陶陶的难题II 时间限制:40s 空间限制:128MB 题目描述 输入格式 第一行包含一个正整数N,表示树中结点的个数. 第二行包含N个正实数,第i个数表示xi (1<=xi<= ...
随机推荐
- webpack教程(五)——图片的加载
首先安装的依赖 npm install file-loader --save-devnpm install image-webpack-loader --save-devnpm install url ...
- CSS 外边距
CSS 外边距围绕在元素边框的空白区域是外边距.设置外边距会在元素外创建额外的“空白”. 设置外边距的最简单的方法就是使用 margin 属性,这个属性接受任何长度单位.百分数值甚至负值. ##### ...
- Heartbeat基础知识-运维小结
在日常的集群系统架构中,一般用到Heartbeat的主要就2种:1)高可用(High Availability)HA集群, 使用Heartbeat实现,也称为”双机热备”, “双机互备”, “双机”: ...
- js怎么将 base64转换成图片
//获取数组最后一个元素 let hasFiles = files[Object.keys(files).pop()] // 参考上面的图片 let file = hasFiles.url let n ...
- python-深浅copy-18
# 赋值运算l1 = [1,2,3]l2 = l1l1.append('a')print(l1,l2) # [1, 2, 3, 'a'] [1, 2, 3, 'a'] #copyl1 = [1,2,3 ...
- 2016-03-22 OneZero团队 Daily Scrum Meeting
会议时间: 2016-03-22 9:33-9:57am 会议内容: 一.在原有Sprint Backlog基础上,我们加了亮点(摇一摇功能:随机选取一条记录在界面显示,以提醒主页君回忆) 需求分析图 ...
- 《Linux内核设计与实现》 第五周 读书笔记(第十八章)
第18章 调试 20135307张嘉琪 18.1 准备开始 18.2 内核中的bug 内核中的bug多种多样,它们的产生可以有无数的原因,同时它们的表象也变化多端,从明白无误的错误代码(比如,没有把正 ...
- vue js 在组件中对数组使用splice() 遇到的坑。。。
遇到的问题: 用el-dialog写了个子组件 要实现在子组件中增删数据 点击确定后把值返回给父组件 父组件在每次点开子组件时都会把自己的值传进去. //父组件传值 this.$refs.transf ...
- CentOS7 截图
https://blog.csdn.net/downing114/article/details/51433862 https://blog.csdn.net/lotluck/article/deta ...
- MySQL: Connection Refused,调整 mysql.ini中的 max_connections
连接相同的结构的MySQL数据库,一套库Tomcat启动正常,另一套库一直报Connection Refused. 可以断定是连接数太小了.查找mysql.ini中的 max_connections, ...