1. LRU
1.1. 原理

LRU(Least recently used,最近最少使用)算法根据数据的历史访问记录来进行淘汰数据,其核心思想是“如果数据最近被访问过,那么将来被访问的几率也更高”。

1.2. 实现

最常见的实现是使用一个链表保存缓存数据,详细算法实现如下:

1. 新数据插入到链表头部;

2. 每当缓存命中(即缓存数据被访问),则将数据移到链表头部;

3. 当链表满的时候,将链表尾部的数据丢弃。

1.3. 分析

【命中率】

当存在热点数据时,LRU的效率很好,但偶发性的、周期性的批量操作会导致LRU命中率急剧下降,缓存污染情况比较严重。

【复杂度】

实现简单。

【代价】

命中时需要遍历链表,找到命中的数据块索引,然后需要将数据移到头部。

2. LRU-K

2.1. 原理

LRU-K中的K代表最近使用的次数,因此LRU可以认为是LRU-1。LRU-K的主要目的是为了解决LRU算法“缓存污染”的问题,其核心思想是将“最近使用过1次”的判断标准扩展为“最近使用过K次”。

2.2. 实现

相比LRU,LRU-K需要多维护一个队列,用于记录所有缓存数据被访问的历史。只有当数据的访问次数达到K次的时候,才将数据放入缓存。当需要淘汰数据时,LRU-K会淘汰第K次访问时间距当前时间最大的数据。详细实现如下:

1. 数据第一次被访问,加入到访问历史列表;

2. 如果数据在访问历史列表里后没有达到K次访问,则按照一定规则(FIFO,LRU)淘汰;

3. 当访问历史队列中的数据访问次数达到K次后,将数据索引从历史队列删除,将数据移到缓存队列中,并缓存此数据,缓存队列重新按照时间排序;

4. 缓存数据队列中被再次访问后,重新排序;

5. 需要淘汰数据时,淘汰缓存队列中排在末尾的数据,即:淘汰“倒数第K次访问离现在最久”的数据。

LRU-K具有LRU的优点,同时能够避免LRU的缺点,实际应用中LRU-2是综合各种因素后最优的选择,LRU-3或者更大的K值命中率会高,但适应性差,需要大量的数据访问才能将历史访问记录清除掉。

2.3. 分析

【命中率】

LRU-K降低了“缓存污染”带来的问题,命中率比LRU要高。

【复杂度】

LRU-K队列是一个优先级队列,算法复杂度和代价比较高。

【代价】

由于LRU-K还需要记录那些被访问过、但还没有放入缓存的对象,因此内存消耗会比LRU要多;当数据量很大的时候,内存消耗会比较可观。

LRU-K需要基于时间进行排序(可以需要淘汰时再排序,也可以即时排序),CPU消耗比LRU要高。

3. Two queues(2Q)

3.1. 原理

Two queues(以下使用2Q代替)算法类似于LRU-2,不同点在于2Q将LRU-2算法中的访问历史队列(注意这不是缓存数据的)改为一个FIFO缓存队列,即:2Q算法有两个缓存队列,一个是FIFO队列,一个是LRU队列。

3.2. 实现

当数据第一次访问时,2Q算法将数据缓存在FIFO队列里面,当数据第二次被访问时,则将数据从FIFO队列移到LRU队列里面,两个队列各自按照自己的方法淘汰数据。详细实现如下:

1. 新访问的数据插入到FIFO队列;

2. 如果数据在FIFO队列中一直没有被再次访问,则最终按照FIFO规则淘汰;

3. 如果数据在FIFO队列中被再次访问,则将数据移到LRU队列头部;

4. 如果数据在LRU队列再次被访问,则将数据移到LRU队列头部;

5. LRU队列淘汰末尾的数据。

注:上图中FIFO队列比LRU队列短,但并不代表这是算法要求,实际应用中两者比例没有硬性规定。

3.3. 分析

【命中率】

2Q算法的命中率要高于LRU。

【复杂度】

需要两个队列,但两个队列本身都比较简单。

【代价】

FIFO和LRU的代价之和。

2Q算法和LRU-2算法命中率类似,内存消耗也比较接近,但对于最后缓存的数据来说,2Q会减少一次从原始存储读取数据或者计算数据的操作。

4. Multi Queue(MQ)

4.1. 原理

MQ算法根据访问频率将数据划分为多个队列,不同的队列具有不同的访问优先级,其核心思想是:优先缓存访问次数多的数据。

4.2. 实现

MQ算法将缓存划分为多个LRU队列,每个队列对应不同的访问优先级。访问优先级是根据访问次数计算出来的,例如

详细的算法结构图如下,Q0,Q1....Qk代表不同的优先级队列,Q-history代表从缓存中淘汰数据,但记录了数据的索引和引用次数的队列:

如上图,算法详细描述如下:

1. 新插入的数据放入Q0;

2. 每个队列按照LRU管理数据;

3. 当数据的访问次数达到一定次数,需要提升优先级时,将数据从当前队列删除,加入到高一级队列的头部;

4. 为了防止高优先级数据永远不被淘汰,当数据在指定的时间里访问没有被访问时,需要降低优先级,将数据从当前队列删除,加入到低一级的队列头部;

5. 需要淘汰数据时,从最低一级队列开始按照LRU淘汰;每个队列淘汰数据时,将数据从缓存中删除,将数据索引加入Q-history头部;

6. 如果数据在Q-history中被重新访问,则重新计算其优先级,移到目标队列的头部;

7. Q-history按照LRU淘汰数据的索引。

4.3. 分析

【命中率】

MQ降低了“缓存污染”带来的问题,命中率比LRU要高。

【复杂度】

MQ需要维护多个队列,且需要维护每个数据的访问时间,复杂度比LRU高。

【代价】

MQ需要记录每个数据的访问时间,需要定时扫描所有队列,代价比LRU要高。

注:虽然MQ的队列看起来数量比较多,但由于所有队列之和受限于缓存容量的大小,因此这里多个队列长度之和和一个LRU队列是一样的,因此队列扫描性能也相近。

5. LRU类算法对比

由于不同的访问模型导致命中率变化较大,此处对比仅基于理论定性分析,不做定量分析。

对比点

对比

命中率

LRU-2 > MQ(2) > 2Q > LRU

复杂度

LRU-2 > MQ(2) > 2Q > LRU

代价

LRU-2  > MQ(2) > 2Q > LRU

实际应用中需要根据业务的需求和对数据的访问情况进行选择,并不是命中率越高越好。例如:虽然LRU看起来命中率会低一些,且存在”缓存污染“的问题,但由于其简单和代价小,实际应用中反而应用更多。

java中最简单的LRU算法实现,就是利用jdk的LinkedHashMap,覆写其中的removeEldestEntry(Map.Entry)方法即可

如果你去看LinkedHashMap的源码可知,LRU算法是通过双向链表来实现,当某个位置被命中,通过调整链表的指向将该位置调整到头位置,新加入的内容直接放在链表头,如此一来,最近被命中的内容就向链表头移动,需要替换时,链表最后的位置就是最近最少使用的位置。
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import java.util.ArrayList; 
import java.util.Collection; 
import java.util.LinkedHashMap; 
import java.util.concurrent.locks.Lock; 
import java.util.concurrent.locks.ReentrantLock; 
import java.util.Map; 
   
   
/**
 * 类说明:利用LinkedHashMap实现简单的缓存, 必须实现removeEldestEntry方法,具体参见JDK文档
 
 * @author dennis
 
 * @param <K>
 * @param <V>
 */ 
public class LRULinkedHashMap<K, V> extends LinkedHashMap<K, V> { 
    private final int maxCapacity; 
   
    private static final float DEFAULT_LOAD_FACTOR = 0.75f; 
   
    private final Lock lock = new ReentrantLock(); 
   
    public LRULinkedHashMap(int maxCapacity) { 
        super(maxCapacity, DEFAULT_LOAD_FACTOR, true); 
        this.maxCapacity = maxCapacity; 
    
   
    @Override 
    protected boolean removeEldestEntry(java.util.Map.Entry<K, V> eldest) { 
        return size() > maxCapacity; 
    
    @Override 
    public boolean containsKey(Object key) { 
        try 
            lock.lock(); 
            return super.containsKey(key); 
        } finally 
            lock.unlock(); 
        
    
   
       
    @Override 
    public V get(Object key) { 
        try 
            lock.lock(); 
            return super.get(key); 
        } finally 
            lock.unlock(); 
        
    
   
    @Override 
    public V put(K key, V value) { 
        try 
            lock.lock(); 
            return super.put(key, value); 
        } finally 
            lock.unlock(); 
        
    
   
    public int size() { 
        try 
            lock.lock(); 
            return super.size(); 
        } finally 
            lock.unlock(); 
        
    
   
    public void clear() { 
        try 
            lock.lock(); 
            super.clear(); 
        } finally 
            lock.unlock(); 
        
    
   
    public Collection<Map.Entry<K, V>> getAll() { 
        try 
            lock.lock(); 
            return new ArrayList<Map.Entry<K, V>>(super.entrySet()); 
        } finally 
            lock.unlock(); 
        
    
    

基于双链表 的LRU实现:

  传统意义的LRU算法是为每一个Cache对象设置一个计数器,每次Cache命中则给计数器+1,而Cache用完,需要淘汰旧内容,放置新内容时,就查看所有的计数器,并将最少使用的内容替换掉。

它的弊端很明显,如果Cache的数量少,问题不会很大, 但是如果Cache的空间过大,达到10W或者100W以上,一旦需要淘汰,则需要遍历所有计算器,其性能与资源消耗是巨大的。效率也就非常的慢了。

它的原理: 将Cache的所有位置都用双连表连接起来,当一个位置被命中之后,就将通过调整链表的指向,将该位置调整到链表头的位置,新加入的Cache直接加到链表头中。

这样,在多次进行Cache操作后,最近被命中的,就会被向链表头方向移动,而没有命中的,而想链表后面移动,链表尾则表示最近最少使用的Cache。

当需要替换内容时候,链表的最后位置就是最少被命中的位置,我们只需要淘汰链表最后的部分即可。

上面说了这么多的理论, 下面用代码来实现一个LRU策略的缓存。

我们用一个对象来表示Cache,并实现双链表,

public class LRUCache {
/**
* 链表节点
* @author Administrator
*
*/
class CacheNode {
……
}
private int cacheSize;//缓存大小
private Hashtable nodes;//缓存容器
private int currentSize;//当前缓存对象数量
private CacheNode first;//(实现双链表)链表头
private CacheNode last;//(实现双链表)链表尾
}

下面给出完整的实现,这个类也被Tomcat所使用( org.apache.tomcat.util.collections.LRUCache),但是在tomcat6.x版本中,已经被弃用,使用另外其他的缓存类来替代它。

public class LRUCache {
/**
* 链表节点
* @author Administrator
*
*/
class CacheNode {
CacheNode prev;//前一节点
CacheNode next;//后一节点
Object value;//值
Object key;//键
CacheNode() {
}
}
public LRUCache(int i) {
currentSize = 0;
cacheSize = i;
nodes = new Hashtable(i);//缓存容器
} /**
* 获取缓存中对象
* @param key
* @return
*/
public Object get(Object key) {
CacheNode node = (CacheNode) nodes.get(key);
if (node != null) {
moveToHead(node);
return node.value;
} else {
return null;
}
} /**
* 添加缓存
* @param key
* @param value
*/
public void put(Object key, Object value) {
CacheNode node = (CacheNode) nodes.get(key); if (node == null) {
//缓存容器是否已经超过大小.
if (currentSize >= cacheSize) {
if (last != null)//将最少使用的删除
nodes.remove(last.key);
removeLast();
} else {
currentSize++;
} node = new CacheNode();
}
node.value = value;
node.key = key;
//将最新使用的节点放到链表头,表示最新使用的.
moveToHead(node);
nodes.put(key, node);
}
/**
* 将缓存删除
* @param key
* @return
*/
public Object remove(Object key) {
CacheNode node = (CacheNode) nodes.get(key);
if (node != null) {
if (node.prev != null) {
node.prev.next = node.next;
}
if (node.next != null) {
node.next.prev = node.prev;
}
if (last == node)
last = node.prev;
if (first == node)
first = node.next;
}
return node;
}
public void clear() {
first = null;
last = null;
}
/**
* 删除链表尾部节点
* 表示 删除最少使用的缓存对象
*/
private void removeLast() {
//链表尾不为空,则将链表尾指向null. 删除连表尾(删除最少使用的缓存对象)
if (last != null) {
if (last.prev != null)
last.prev.next = null;
else
first = null;
last = last.prev;
}
} /**
* 移动到链表头,表示这个节点是最新使用过的
* @param node
*/
private void moveToHead(CacheNode node) {
if (node == first)
return;
if (node.prev != null)
node.prev.next = node.next;
if (node.next != null)
node.next.prev = node.prev;
if (last == node)
last = node.prev;
if (first != null) {
node.next = first;
first.prev = node;
}
first = node;
node.prev = null;
if (last == null)
last = first;
}
private int cacheSize;
private Hashtable nodes;//缓存容器
private int currentSize;
private CacheNode first;//链表头
private CacheNode last;//链表尾
} http://blog.csdn.net/yunhua_lee/article/details/7599671
转自https://www.cnblogs.com/wuyuankun/p/3697623.html

缓存淘汰算法---LRU转的更多相关文章

  1. 聊聊缓存淘汰算法-LRU 实现原理

    前言 我们常用缓存提升数据查询速度,由于缓存容量有限,当缓存容量到达上限,就需要删除部分数据挪出空间,这样新数据才可以添加进来.缓存数据不能随机删除,一般情况下我们需要根据某种算法删除缓存数据.常用淘 ...

  2. 缓存淘汰算法 LRU 和 LFU

    LRU (Least Recently Used), 即最近最少使用用算法,是一种常见的 Cache 页面置换算法,有利于提高 Cache 命中率. LRU 的算法思想:对于每个页面,记录该页面自上一 ...

  3. 缓存淘汰算法--LRU算法

    1. LRU1.1. 原理 LRU(Least recently used,最近最少使用)算法根据数据的历史访问记录来进行淘汰数据,其核心思想是"如果数据最近被访问过,那么将来被访问的几率也 ...

  4. 缓存淘汰算法---LRU

    1. LRU1.1. 原理 LRU(Least recently used,最近最少使用)算法根据数据的历史访问记录来进行淘汰数据,其核心思想是“如果数据最近被访问过,那么将来被访问的几率也更高”. ...

  5. 缓存淘汰算法--LRU算法(转)

    (转自:http://flychao88.iteye.com/blog/1977653) 1. LRU1.1. 原理 LRU(Least recently used,最近最少使用)算法根据数据的历史访 ...

  6. 04 | 链表(上):如何实现LRU缓存淘汰算法?

    今天我们来聊聊“链表(Linked list)”这个数据结构.学习链表有什么用呢?为了回答这个问题,我们先来讨论一个经典的链表应用场景,那就是+LRU+缓存淘汰算法. 缓存是一种提高数据读取性能的技术 ...

  7. 数据结构与算法之美 06 | 链表(上)-如何实现LRU缓存淘汰算法

    常见的缓存淘汰策略: 先进先出 FIFO 最少使用LFU(Least Frequently Used) 最近最少使用 LRU(Least Recently Used) 链表定义: 链表也是线性表的一种 ...

  8. 链表:如何实现LRU缓存淘汰算法?

    缓存淘汰策略: FIFO:先入先出策略 LFU:最少使用策略 LRU:最近最少使用策略   链表的数据结构: 可以看到,数组需要连续的内存空间,当内存空间充足但不连续时,也会申请失败触发GC,链表则可 ...

  9. 《数据结构与算法之美》 <04>链表(上):如何实现LRU缓存淘汰算法?

    今天我们来聊聊“链表(Linked list)”这个数据结构.学习链表有什么用呢?为了回答这个问题,我们先来讨论一个经典的链表应用场景,那就是 LRU 缓存淘汰算法. 缓存是一种提高数据读取性能的技术 ...

随机推荐

  1. 高并发分布式系统中生成全局唯一(订单号)Id

    1.GUID数据因毫无规律可言造成索引效率低下,影响了系统的性能,那么通过组合的方式,保留GUID的10个字节,用另6个字节表示GUID生成的时间(DateTime),这样我们将时间信息与GUID组合 ...

  2. PHP5.5+ APC 安装

    因php 语言特性(短链接), 没法实现共享内存来提升性能. apc的出现给出了一个解决方案 .不过很可惜5.5+以后PHP官方已经废弃掉这个扩展. 幸好出现了 apcu扩展提供后续功能 api 也没 ...

  3. win7 win10开启网络访问(网络访问 无法访问 网络访问需要输入密码 等问题处理)

    狂客原创,转载请注明.侵权必究! 右键单击桌面的“网络”图标 选择“属性”. 在弹出的“网络和共享中心”窗口,点击“更改高级共享设置”. 参考文章:https://jingyan.baidu.com/ ...

  4. 【Jenkins】Jenkins安装

    下载rpm包 wget http://pkg.jenkins-ci.org/redhat-stable/jenkins-2.7.3-1.1.noarch.rpm 安装 rpm -ivh jenkins ...

  5. 跨平台桌面程序框架Electron

    https://www.npmjs.com/ js库

  6. sendmail邮件自动发送

    配置邮件自动发送: 1.安装软件 yum -y install sendmail mailx 2.发送邮件的邮箱授权 eg:y******@126.com 网页网易云邮箱登陆 --> 设置 -- ...

  7. O - Muddy Fields

    来源poj2226 Rain has pummeled the cows' field, a rectangular grid of R rows and C columns (1 <= R & ...

  8. Background removal with deep learning

    [原文链接] Background removal with deep learning   This post describes our work and research on the gree ...

  9. Python学习之旅(三十)

    Python基础知识(29):virtualenv virtualenv:用来为一个应用创建一套隔离的Python运行环境 比如,现有两个Python项目,一个是Python2.7的一个是Python ...

  10. 大课深度复盘、解密研发效率之道 | 第42届MPD工作坊成都站日程公布!

    互联网时代,随着区块链.大数据.人工智能等技术的快速发展,产品迭代速度飞快.在这样的市场环境下,提升研发效率.降低研发成本,同时支撑业务的快速发展,是每个企业都追求的目标之一. 大中型企业如何快速转型 ...