『TensorFlow』批处理类
基础知识
下面有莫凡的对于批处理的解释:
fc_mean,fc_var = tf.nn.moments(
Wx_plus_b,
axes=[0],
# 想要 normalize 的维度, [0] 代表 batch 维度
# 如果是图像数据, 可以传入 [0, 1, 2], 相当于求[batch, height, width] 的均值/方差, 注意不要加入 channel 维度
)
scale = tf.Variable(tf.ones([out_size]))
shift = tf.Variable(tf.zeros([out_size]))
epsilon = 0.001
Wx_plus_b = tf.nn.batch_normalization(Wx_plus_b,fc_mean,fc_var,shift,scale,epsilon)
# 上面那一步, 在做如下事情:
# Wx_plus_b = (Wx_plus_b - fc_mean) / tf.sqrt(fc_var + 0.001)
# Wx_plus_b = Wx_plus_b * scale + shift
tf.contrib.layers.batch_norm:封装好的批处理类
class batch_norm():
'''batch normalization层''' def __init__(self, epsilon=1e-5,
momentum=0.9, name='batch_norm'):
'''
初始化
:param epsilon: 防零极小值
:param momentum: 滑动平均参数
:param name: 节点名称
'''
with tf.variable_scope(name):
self.epsilon = epsilon
self.momentum = momentum
self.name = name def __call__(self, x, train=True):
# 一个封装了的会在内部调用batch_normalization进行正则化的高级接口
return tf.contrib.layers.batch_norm(x,
decay=self.momentum, # 滑动平均参数
updates_collections=None,
epsilon=self.epsilon,
scale=True,
is_training=train, # 影响滑动平均
scope=self.name)
1.
Note: when training, the moving_mean and moving_variance need to be updated.
By default the update ops are placed in `tf.GraphKeys.UPDATE_OPS`, so they
need to be added as a dependency to the `train_op`. For example:
```python
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
train_op = optimizer.minimize(loss)
```
One can set updates_collections=None to force the updates in place, but that
can have a speed penalty, especially in distributed settings.2.
is_training: Whether or not the layer is in training mode. In training mode
it would accumulate the statistics of the moments into `moving_mean` and
`moving_variance` using an exponential moving average with the given
`decay`. When it is not in training mode then it would use the values of
the `moving_mean` and the `moving_variance`.
tf.nn.batch_normalization:原始接口封装使用
实际上tf.contrib.layers.batch_norm对于tf.nn.moments和tf.nn.batch_normalization进行了一次封装,这个类又进行了一次封装(主要是制订了一部分默认参数),实际操作时可以仅仅使用tf.contrib.layers.batch_norm函数,它已经足够方便了。
添加了滑动平均处理之后,也就是不使用封装,直接使用tf.nn.moments和tf.nn.batch_normalization实现的batch_norm函数:
def batch_norm(x,beta,gamma,phase_train,scope='bn',decay=0.9,eps=1e-5):
with tf.variable_scope(scope):
# beta = tf.get_variable(name='beta', shape=[n_out], initializer=tf.constant_initializer(0.0), trainable=True)
# gamma = tf.get_variable(name='gamma', shape=[n_out],
# initializer=tf.random_normal_initializer(1.0, stddev), trainable=True)
batch_mean,batch_var = tf.nn.moments(x,[0,1,2],name='moments')
ema = tf.train.ExponentialMovingAverage(decay=decay) def mean_var_with_update():
ema_apply_op = ema.apply([batch_mean,batch_var])
with tf.control_dependencies([ema_apply_op]):
return tf.identity(batch_mean),tf.identity(batch_var)
# identity之后会把Variable转换为Tensor并入图中,
# 否则由于Variable是独立于Session的,不会被图控制control_dependencies限制 mean,var = tf.cond(phase_train,
mean_var_with_update,
lambda: (ema.average(batch_mean),ema.average(batch_var)))
normed = tf.nn.batch_normalization(x, mean, var, beta, gamma, eps)
return normed
另一种将滑动平均展开了的方式,
def batch_norm(x, size, training, decay=0.999):
beta = tf.Variable(tf.zeros([size]), name='beta')
scale = tf.Variable(tf.ones([size]), name='scale')
pop_mean = tf.Variable(tf.zeros([size]))
pop_var = tf.Variable(tf.ones([size]))
epsilon = 1e-3 batch_mean, batch_var = tf.nn.moments(x, [0, 1, 2])
train_mean = tf.assign(pop_mean, pop_mean * decay + batch_mean * (1 - decay))
train_var = tf.assign(pop_var, pop_var * decay + batch_var * (1 - decay)) def batch_statistics():
with tf.control_dependencies([train_mean, train_var]):
return tf.nn.batch_normalization(x, batch_mean, batch_var, beta, scale, epsilon, name='batch_norm') def population_statistics():
return tf.nn.batch_normalization(x, pop_mean, pop_var, beta, scale, epsilon, name='batch_norm') return tf.cond(training, batch_statistics, population_statistics)
注, tf.cond:流程控制,参数一True,则执行参数二的函数,否则执行参数三函数。
『TensorFlow』批处理类的更多相关文章
- 『TensorFlow』专题汇总
TensorFlow:官方文档 TensorFlow:项目地址 本篇列出文章对于全零新手不太合适,可以尝试TensorFlow入门系列博客,搭配其他资料进行学习. Keras使用tf.Session训 ...
- 『TensorFlow』流程控制
『PyTorch』第六弹_最小二乘法对比PyTorch和TensorFlow TensorFlow 控制流程操作 TensorFlow 提供了几个操作和类,您可以使用它们来控制操作的执行并向图中添加条 ...
- 『TensorFlow』读书笔记_降噪自编码器
『TensorFlow』降噪自编码器设计 之前学习过的代码,又敲了一遍,新的收获也还是有的,因为这次注释写的比较详尽,所以再次记录一下,具体的相关知识查阅之前写的文章即可(见上面链接). # Aut ...
- 『TensorFlow』梯度优化相关
tf.trainable_variables可以得到整个模型中所有trainable=True的Variable,也是自由处理梯度的基础 基础梯度操作方法: tf.gradients 用来计算导数.该 ...
- 『TensorFlow』模型保存和载入方法汇总
『TensorFlow』第七弹_保存&载入会话_霸王回马 一.TensorFlow常规模型加载方法 保存模型 tf.train.Saver()类,.save(sess, ckpt文件目录)方法 ...
- 『TensorFlow』命令行参数解析
argparse很强大,但是我们未必需要使用这么繁杂的东西,TensorFlow自己封装了一个简化版本的解析方式,实际上是对argparse的封装 脚本化调用tensorflow的标准范式: impo ...
- 『TensorFlow』SSD源码学习_其一:论文及开源项目文档介绍
一.论文介绍 读论文系列:Object Detection ECCV2016 SSD 一句话概括:SSD就是关于类别的多尺度RPN网络 基本思路: 基础网络后接多层feature map 多层feat ...
- 『TensorFlow』DCGAN生成动漫人物头像_下
『TensorFlow』以GAN为例的神经网络类范式 『cs231n』通过代码理解gan网络&tensorflow共享变量机制_上 『TensorFlow』通过代码理解gan网络_中 一.计算 ...
- 『TensorFlow』滑动平均
滑动平均会为目标变量维护一个影子变量,影子变量不影响原变量的更新维护,但是在测试或者实际预测过程中(非训练时),使用影子变量代替原变量. 1.滑动平均求解对象初始化 ema = tf.train.Ex ...
随机推荐
- POI导入excel时读取excel数据的真实行数
有很多时候会出现空的数据导致行数被识别多的情况 // 获取Excel表的真实行数 int getExcelRealRow(Sheet sheet) { boolean flag = false; fo ...
- css3 伸缩百分比的调整
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- 安装和使用ZFS
一.安装和使用ZFS Centos7上安装和使用ZFS:https://blog.csdn.net/linuxnews/article/details/51286358
- rpm 包的安装、卸载、升级、查询、验证
关键字: rpm 强制卸载jdk rpm -e j2sdk1.4.2_04 强制覆盖安装jdk rpm -Uvh j2sdk-1_4_1_02-fcs-linux-i586.rpm --force - ...
- 开发流程(Vue)
1.当你拿到一个需求时,先不要着急完成静态页面 2.重点观察数据结构,进行数据的分析,包括前端所需要的数据类型从而进行数据类型定义(如果是前后端分离的情况下,建议不要考虑前端数据和数据库的数据类型对应 ...
- Solr数据迁移
单机Solr部署在linux /opt目录下,运行一段时间后发现该目录分配的空间不足,而Solr的索引数据量较大,必须更改相关core下面的data目录,以改变索引存放的目录. 找到相应的solrco ...
- Oracle时间日期函数
ORACLE日期时间函数大全 TO_DATE格式(以时间:2007-11-02 13:45:25为例) Year: yy two digits 两位年 ...
- Go 初体验 - channel.1 - 基本用法
channel 分为两种: 1. 无缓冲 channel 2. 缓冲 channel 无缓冲 channel 的使用必须遵循一个原则:推送和读取必须同时存在,否则就发生死锁 先上代码: 这里定义了一个 ...
- Zookeeper应用之——栅栏(barrier)
Zookeeper应用之——栅栏(barrier) 栅栏(barrier)简介 barrier的作用是所有的线程等待,知道某一时刻,锁释放,所有的线程同时执行.举一个生动的例子,比如跑步比赛,所有 运 ...
- Python数据分析Numpy库方法简介(四)
Numpy的相关概念2 副本和视图 副本:复制 三种情况属于浅copy 赋值运算 切片 视图:链接,操作数组是,返回的不是副本就是视图 c =a.view().创建a的视图/影子和切片一样都是浅cop ...