Description:

有一棵点数为 N 的树,树边有边权。给你一个在 0~ N 之内的正整数 K ,你要在这棵树中选择 K个点,将其染成黑色,并将其他 的N-K个点染成白色 。 将所有点染色后,你会获得黑点两两之间的距离加上白点两两之间的距离的和的受益。问受益最大值是多少。

Hint:

\(n \le 2^3\)

Solution:

很好的树型dp题

设状态\(f[i][j]\)表示i点子树染j个黑点的最大距离和

然而无法转移

换一种角度,考虑每条边对答案的贡献

设一条边的下面一端u的子树中有k个黑点

则\(Ans=k*(m-k)+(sz[u]-k)*(n-sz[u]-m+k)\)

这样就能用树型背包做了

#include <map>
#include <set>
#include <stack>
#include <cmath>
#include <queue>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#define ls p<<1
#define rs p<<1|1
using namespace std;
typedef long long ll;
const int mxn=1e5+5;
int n,m,cnt,hd[mxn],sz[mxn];
ll f[2005][2005]; inline int read() {
char c=getchar(); int x=0,f=1;
while(c>'9'||c<'0') {if(c=='-') f=-1;c=getchar();}
while(c<='9'&&c>='0') {x=(x<<3)+(x<<1)+(c&15);c=getchar();}
return x*f;
}
inline void chkmax(int &x,int y) {if(x<y) x=y;}
inline void chkmin(int &x,int y) {if(x>y) x=y;} struct ed {
int to,nxt,w;
}t[mxn<<1]; inline void add(int u,int v,int w) {
t[++cnt]=(ed) {v,hd[u],w}; hd[u]=cnt;
} void dfs(int u,int fa)
{
sz[u]=1; f[u][0]=f[u][1]=0;
for(int i=hd[u];i;i=t[i].nxt) {
int v=t[i].to;
if(v==fa) continue ;
dfs(v,u); sz[u]+=sz[v];
for(int j=min(m,sz[u]);j>=0;--j) {
if(f[u][j]!=-1)
f[u][j]+=f[v][0]+1ll*sz[v]*(n-m-sz[v])*t[i].w; //这里一定要先处理v为0的答案,如果在后面转移就会错
for(int k=min(j,sz[v]);k;--k) {
if(f[u][j-k]==-1) continue ;
ll val=1ll*(k*(m-k)+(sz[v]-k)*(n-m-sz[v]+k))*t[i].w;
f[u][j]=max(f[u][j],f[u][j-k]+f[v][k]+val);
}
}
}
} int main()
{
memset(f,-1,sizeof(f));
n=read(); m=read(); int u,v,w;
for(int i=1;i<n;++i) {
u=read(); v=read(); w=read();
add(u,v,w); add(v,u,w);
}
dfs(1,1);
printf("%lld",f[1][m]);
return 0;
}

[HAOI2015]树上染色的更多相关文章

  1. bzoj 4033: [HAOI2015]树上染色 [树形DP]

    4033: [HAOI2015]树上染色 我写的可是\(O(n^2)\)的树形背包! 注意j倒着枚举,而k要正着枚举,因为k可能从0开始,会使用自己更新一次 #include <iostream ...

  2. BZOJ4033: [HAOI2015]树上染色(树形DP)

    4033: [HAOI2015]树上染色 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 3461  Solved: 1473[Submit][Stat ...

  3. BZOJ4033 HAOI2015 树上染色 【树上背包】

    BZOJ4033 HAOI2015 树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染成白 ...

  4. [BZOJ4033][HAOI2015]树上染色(树形DP)

    4033: [HAOI2015]树上染色 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 2437  Solved: 1034[Submit][Stat ...

  5. 【BZOJ4033】[HAOI2015]树上染色 树形DP

    [BZOJ4033][HAOI2015]树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染 ...

  6. BZOJ_4033_[HAOI2015]树上染色_树形DP

    BZOJ_4033_[HAOI2015]树上染色_树形DP Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并 将其他的 ...

  7. BZOJ 4033[HAOI2015] 树上染色(树形DP)

    4033: [HAOI2015]树上染色 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 3188  Solved: 1366[Submit][Stat ...

  8. [HAOI2015]树上染色(树形dp)

    [HAOI2015]树上染色 题目描述 有一棵点数为 N 的树,树边有边权.给你一个在 0~ N 之内的正整数 K ,你要在这棵树中选择 K个点,将其染成黑色,并将其他 的N-K个点染成白色 . 将所 ...

  9. [HAOI2015]树上染色(树上dp)

    [HAOI2015]树上染色 这种要算点对之间路径的长度和的题,难以统计每个点的贡献.这个时候一般考虑算每一条边贡献了哪些点对. 知道这个套路以后,那么这题就很好做了. 状态:设\(dp[u][i]\ ...

  10. [HAOI2015]树上染色 树状背包 dp

    #4033. [HAOI2015]树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并 将其他的N-K个点染成白 ...

随机推荐

  1. Tomcat配置域名/IP访问及其中遇到的问题注意事项

    1.先在tomcat下的conf下找到server.xml文件,用记事本打开后,首先对端口号进行修改,以前一直以为8080是默认的端口号,其实默认的端口号是80 <Connector port= ...

  2. Centos7.4上Apache(http)编译安装

    前提:1.这个centos操作系统能上网 2.yum 安装apr,apr-util,zlib-devel,groupinstall  Development  Tools,gcc 1.在apache的 ...

  3. Centos7上搭建ftp服务器

    ftp服务器搭建 1.安装好centos系统,配好yum仓库 其中vsftpd源在这下载 http://rpmfind.net/linux/rpm2html/search.php?query=vsft ...

  4. MVC开发中的常见错误-02-在应用程序配置文件中找不到名为“OAEntities”的连接字符串。

    在应用程序配置文件中找不到名为“OAEntities”的连接字符串. 分析原因:由于Model类是数据库实体模型,通过从数据库中引用的方式添加实体,所以会自动产生一个数据库连接字符串,而程序运行到此, ...

  5. 使用CSS选择器定位页面元素

    摘录:http://blog.csdn.net/defectfinder/article/details/51734690 CSS选择器也是一个非常好用的定位元素的方法,甚至比Xpath强大.在自动化 ...

  6. JAVA之复制数组

    //复制数组 //Arrays.copyOf(arr, 5) //arr:要复制的对象,5为新数组的长度 import java.util.Arrays; public class Cope { pu ...

  7. 目标检测算法之R-CNN算法详解

    R-CNN全称为Region-CNN,它可以说是第一个成功地将深度学习应用到目标检测上的算法.后面提到的Fast R-CNN.Faster R-CNN全部都是建立在R-CNN的基础上的. 传统目标检测 ...

  8. 437. 路径总和 III

    方法一:48 ms /* sumUp递归子程序求解以root为根节点的子节点之和为sum的路径数目; pathSum递归部分是把根节点逐一考察,如以root->left,以root->ri ...

  9. 微信JSAPI分享朋友圈调试经验:invalid signature签名错误排查

    .invalid signature签名错误.建议按如下顺序检查: 1.确认签名算法正确,可用http://mp.weixin.qq.com/debug/cgi-bin/sandbox?t=jsapi ...

  10. Pytorch LSTM 词性判断

    首先,我们定义好一个LSTM网络,然后给出一个句子,每个句子都有很多个词构成,每个词可以用一个词向量表示,这样一句话就可以形成一个序列,我们将这个序列依次传入LSTM,然后就可以得到与序列等长的输出, ...