[HAOI2015]树上染色
Description:
有一棵点数为 N 的树,树边有边权。给你一个在 0~ N 之内的正整数 K ,你要在这棵树中选择 K个点,将其染成黑色,并将其他 的N-K个点染成白色 。 将所有点染色后,你会获得黑点两两之间的距离加上白点两两之间的距离的和的受益。问受益最大值是多少。
Hint:
\(n \le 2^3\)
Solution:
很好的树型dp题
设状态\(f[i][j]\)表示i点子树染j个黑点的最大距离和
然而无法转移
换一种角度,考虑每条边对答案的贡献
设一条边的下面一端u的子树中有k个黑点
则\(Ans=k*(m-k)+(sz[u]-k)*(n-sz[u]-m+k)\)
这样就能用树型背包做了
#include <map>
#include <set>
#include <stack>
#include <cmath>
#include <queue>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#define ls p<<1
#define rs p<<1|1
using namespace std;
typedef long long ll;
const int mxn=1e5+5;
int n,m,cnt,hd[mxn],sz[mxn];
ll f[2005][2005];
inline int read() {
char c=getchar(); int x=0,f=1;
while(c>'9'||c<'0') {if(c=='-') f=-1;c=getchar();}
while(c<='9'&&c>='0') {x=(x<<3)+(x<<1)+(c&15);c=getchar();}
return x*f;
}
inline void chkmax(int &x,int y) {if(x<y) x=y;}
inline void chkmin(int &x,int y) {if(x>y) x=y;}
struct ed {
int to,nxt,w;
}t[mxn<<1];
inline void add(int u,int v,int w) {
t[++cnt]=(ed) {v,hd[u],w}; hd[u]=cnt;
}
void dfs(int u,int fa)
{
sz[u]=1; f[u][0]=f[u][1]=0;
for(int i=hd[u];i;i=t[i].nxt) {
int v=t[i].to;
if(v==fa) continue ;
dfs(v,u); sz[u]+=sz[v];
for(int j=min(m,sz[u]);j>=0;--j) {
if(f[u][j]!=-1)
f[u][j]+=f[v][0]+1ll*sz[v]*(n-m-sz[v])*t[i].w; //这里一定要先处理v为0的答案,如果在后面转移就会错
for(int k=min(j,sz[v]);k;--k) {
if(f[u][j-k]==-1) continue ;
ll val=1ll*(k*(m-k)+(sz[v]-k)*(n-m-sz[v]+k))*t[i].w;
f[u][j]=max(f[u][j],f[u][j-k]+f[v][k]+val);
}
}
}
}
int main()
{
memset(f,-1,sizeof(f));
n=read(); m=read(); int u,v,w;
for(int i=1;i<n;++i) {
u=read(); v=read(); w=read();
add(u,v,w); add(v,u,w);
}
dfs(1,1);
printf("%lld",f[1][m]);
return 0;
}
[HAOI2015]树上染色的更多相关文章
- bzoj 4033: [HAOI2015]树上染色 [树形DP]
4033: [HAOI2015]树上染色 我写的可是\(O(n^2)\)的树形背包! 注意j倒着枚举,而k要正着枚举,因为k可能从0开始,会使用自己更新一次 #include <iostream ...
- BZOJ4033: [HAOI2015]树上染色(树形DP)
4033: [HAOI2015]树上染色 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 3461 Solved: 1473[Submit][Stat ...
- BZOJ4033 HAOI2015 树上染色 【树上背包】
BZOJ4033 HAOI2015 树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染成白 ...
- [BZOJ4033][HAOI2015]树上染色(树形DP)
4033: [HAOI2015]树上染色 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 2437 Solved: 1034[Submit][Stat ...
- 【BZOJ4033】[HAOI2015]树上染色 树形DP
[BZOJ4033][HAOI2015]树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染 ...
- BZOJ_4033_[HAOI2015]树上染色_树形DP
BZOJ_4033_[HAOI2015]树上染色_树形DP Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并 将其他的 ...
- BZOJ 4033[HAOI2015] 树上染色(树形DP)
4033: [HAOI2015]树上染色 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 3188 Solved: 1366[Submit][Stat ...
- [HAOI2015]树上染色(树形dp)
[HAOI2015]树上染色 题目描述 有一棵点数为 N 的树,树边有边权.给你一个在 0~ N 之内的正整数 K ,你要在这棵树中选择 K个点,将其染成黑色,并将其他 的N-K个点染成白色 . 将所 ...
- [HAOI2015]树上染色(树上dp)
[HAOI2015]树上染色 这种要算点对之间路径的长度和的题,难以统计每个点的贡献.这个时候一般考虑算每一条边贡献了哪些点对. 知道这个套路以后,那么这题就很好做了. 状态:设\(dp[u][i]\ ...
- [HAOI2015]树上染色 树状背包 dp
#4033. [HAOI2015]树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并 将其他的N-K个点染成白 ...
随机推荐
- python SSL处理
浏览器SSL提示 我们看一下IE的解决方案,对ie浏览器而言,需要添加Desired Capabilities的acceptSslCerts选项为True,代码如下: 的 112 / 166 #_*_ ...
- 如何使用Scrapy框架实现网络爬虫
现在用下面这个案例来演示如果爬取安居客上面深圳的租房信息,我们采取这样策略,首先爬取所有租房信息的链接地址,然后再根据爬取的地址获取我们所需要的页面信息.访问次数多了,会被重定向到输入验证码页面,这个 ...
- 常见的爬虫分析库(3)-Python正则表达式与re模块
在线正则表达式测试 http://tool.oschina.net/regex/ 常见匹配模式 模式 描述 \w 匹配字母数字及下划线 \W 匹配非字母数字下划线 \s 匹配任意空白字符,等价于 [\ ...
- python property的用法
用法一: class Test(object): def __init__(self): # 私有化 self.__num = 100 #名字重整_Test__num def setNum(self, ...
- 005-2-Python文件操作
Python文件操作(file) 文件操作的步骤: 打开文件,得到文件句柄并赋值给一个变量 通过句柄对文件进行操作 关闭文件(操作文件后记住关闭) 1.读写文件的基础语法: open() 将会返回一个 ...
- .NetCore 下开发独立的(RPL)含有界面的组件包 (五)授权过滤参数处理
.NetCore 下开发独立的(RPL)含有界面的组件包 (一)准备工作 .NetCore 下开发独立的(RPL)含有界面的组件包 (二)扩展中间件及服 务 .NetCore 下开发独立的(RPL)含 ...
- jquery自定义事件
触发事件: $(document).trigger('REMOVE_WEBSITE_MSG'); 判断消息条数为0,触发这个
- Eclipse+Maven整合开发Java项目(一)➣Maven基础环境配置
概述 Maven是一个Java语言编写的开源项目管理工具,是Apache软件基金会的顶级项目.主要用于项目构建,依赖管理,项目信息管理.有些项目需要添加响应的依赖包,Maven就是公用包集合.存在远程 ...
- Python_二维数组
例1:将数组旋转90度 a = [[i for i in range(4)] for n in range(4)] print(a) # 遍历大序列 for a_index, w in enumera ...
- Javascript 中调参数的脚本onclick="select(this)" this 怎么解释
解释1. this,指当前的onclick所在的节点本身. 比如: <div onclick='select(this)"></div> 则当点击div时,this就 ...