Hbase记录-Hbase介绍
Hbase是什么
HBase是一种构建在HDFS之上的分布式、面向列的存储系统,适用于实时读写、随机访问超大规模数据的集群。
HBase的特点
大:一个表可以有上亿行,上百万列。
面向列:面向列表(簇)的存储和权限控制,列(簇)独立检索。
稀疏:对于为空(NULL)的列,并不占用存储空间,因此,表可以设计的非常稀疏。
无模式:每一行都有一个可以排序的主键和任意多的列,列可以根据需要动态增加,同一张表中不同的行可以有截然不同的列。
数据多版本:每个单元中的数据可以有多个版本,默认情况下,版本号自动分配,版本号就是单元格插入时的时间戳。
数据类型单一:HBase中的数据都是字符串,没有类型。
HBase的高并发和实时处理数据
Hadoop是一个高容错、高延时的分布式文件系统和高并发的批处理系统,不适用于提供实时计算;
HBase是可以提供实时计算的分布式数据库,数据被保存在HDFS分布式文件系统上,由HDFS保证期高容错性,但是再生产环境中,HBase是如何基于hadoop提供实时性呢? HBase上的数据是以StoreFile(HFile)二进制流的形式存储在HDFS上block块儿中;但是HDFS并不知道的hbase存的是什么,它只把存储文件是为二进制文件,也就是说,hbase的存储数据对于HDFS文件系统是透明的。下面是HBase文件在HDFS上的存储示意图。
从根本上说,HBase能提供实时计算服务主要原因是由其架构和底层的数据结构决定的,即由LSM-Tree + HTable(region分区) + Cache决定——客户端可以直接定位到要查数据所在的HRegion server服务器,然后直接在服务器的一个region上查找要匹配的数据,并且这些数据部分是经过cache缓存的。具体查询流程如下图所示:
具体数据访问流程如下:
Client会通过内部缓存的相关的-ROOT-中的信息和.META.中的信息直接连接与请求数据匹配的HRegion server;
然后直接定位到该服务器上与客户请求对应的Region,客户请求首先会查询该Region在内存中的缓存——Memstore(Memstore是一个按key排序的树形结构的缓冲区);
如果在Memstore中查到结果则直接将结果返回给Client;
在Memstore中没有查到匹配的数据,接下来会读已持久化的StoreFile文件中的数据。前面的章节已经讲过,StoreFile也是按 key排序的树形结构的文件——并且是特别为范围查询或block查询优化过的,;另外HBase读取磁盘文件是按其基本I/O单元(即 HBase Block)读数据的。
HBase数据模型
Row Key
与 NoSQL 数据库一样,Row Key 是用来检索记录的主键。访问 HBase table 中的行,只有三种方式:
1)通过单个 Row Key 访问。
2)通过 Row Key 的 range 全表扫描。
3)Row Key 可以使任意字符串(最大长度是64KB,实际应用中长度一般为 10 ~ 100bytes),在HBase 内部,Row Key 保存为字节数组。
列族
HBase 表中的每个列都归属于某个列族。列族是表的 Schema 的一部分(而列不是),必须在使用表之前定义。列名都以列族作为前缀,例如 courses:history、courses:math 都属于 courses 这个列族。
时间戳
HBase 中通过 Row 和 Columns 确定的一个存储单元称为 Cell。每个 Cell 都保存着同一份数据的多个版本。 版本通过时间戳来索引,时间戳的类型是 64 位整型。时间戳可以由HBase(在数据写入时自动)赋值, 此时时间戳是精确到毫秒的当前系统时间。时间戳也可以由客户显示赋值。如果应用程序要避免数据版本冲突,就必须自己生成具有唯一性的时间戳。每个 Cell 中,不同版本的数据按照时间倒序排序,即最新的数据排在最前面。
Cell
Cell 是由 {row key,column(=< family> + < label>),version} 唯一确定的单元。Cell 中的数据是没有类型的,全部是字节码形式存储。
HBase物理存储
Table 在行的方向上分割为多个HRegion,每个HRegion分散在不同的RegionServer中。
每个HRegion由多个Store构成,每个Store由一个memStore和0或多个StoreFile组成,每个Store保存一个Columns Family
HBase系统架构
从HBase的架构图上可以看出,HBase中的组件包括Client、Zookeeper、HMaster、HRegionServer、HRegion、Store、MemStore、StoreFile、HFile、HLog等,接下来介绍他们的作用。
HBase中的每张表都通过行键按照一定的范围被分割成多个子表(HRegion),默认一个HRegion超过256M就要被分割成两个,这个过程由HRegionServer管理,而HRegion的分配由HMaster管理。
Client
包含访问HBase的接口,并维护cache来加快对HBase的访问。
Zookeeper的作用
HBase依赖Zookeeper,默认情况下HBase管理Zookeeper实例(启动或关闭Zookeeper),Master与RegionServers启动时会向Zookeeper注册。
Zookeeper的作用:
保证任何时候,集群中只有一个master
存储所有Region的寻址入口
实时监控Region server的上线和下线信息。并实时通知给master
存储HBase的schema和table元数据
HMaster的作用
为Region server分配region
负责Region server的负载均衡
发现失效的Region server并重新分配其上的region。
HDFS上的垃圾文件回收。
处理schema更新请求。
HRegionServer的作用
维护master分配给他的region,处理对这些region的io请求。
负责切分正在运行过程中变的过大的region。
注意:client访问hbase上的数据时不需要master的参与,因为数据寻址访问zookeeper和region server,而数据读写访问region server。master仅仅维护table和region的元数据信息,而table的元数据信息保存在zookeeper上,因此master负载很低。
HRegion
table在行的方向上分隔为多个Region。Region是HBase中分布式存储和负载均衡的最小单元,即不同的region可以分别在不同的Region Server上,但同一个Region是不会拆分到多个server上。
Region按大小分隔,每个表一般是只有一个region。随着数据不断插入表,region不断增大,当region的某个列族达到一个阈值(默认256M)时就会分成两个新的region。
每个region由以下信息标识:
< 表名,startRowkey,创建时间>
由目录表(-ROOT-和.META.)记录该region的endRowkey
Region被分配给哪个Region Server是完全动态的,所以需要机制来定位Region具体在哪个region server。
Store
每一个region由一个或多个store组成,至少是一个store,hbase会把一起访问的数据放在一个store里面,即为每个 ColumnFamily建一个store,如果有几个ColumnFamily,也就有几个Store。一个Store由一个memStore和0或者 多个StoreFile组成。 HBase以store的大小来判断是否需要切分region
MemStore
memStore 是放在内存里的。保存修改的数据即keyValues。当memStore的大小达到一个阀值(默认64MB)时,memStore会被flush到文 件,即生成一个快照。目前hbase 会有一个线程来负责memStore的flush操作。
StoreFile
memStore内存中的数据写到文件后就是StoreFile,StoreFile底层是以HFile的格式保存。
HLog
HLog(WAL log):WAL意为write ahead log,用来做灾难恢复使用,HLog记录数据的所有变更,一旦region server 宕机,就可以从log中进行恢复。
HLog文件就是一个普通的Hadoop Sequence File, Sequence File的value是key时HLogKey对象,其中记录了写入数据的归属信息,除了table和region名字外,还同时包括sequence number和timestamp,timestamp是写入时间,sequence number的起始值为0,或者是最近一次存入文件系统中的sequence number。 Sequence File的value是HBase的KeyValue对象,即对应HFile中的KeyValue。
LogFlusher
前面提到,数据以KeyValue形式到达HRegionServer,将写入WAL之后,写入一个SequenceFile。看过去没问题,但是因为数 据流在写入文件系统时,经常会缓存以提高性能。这样,有些本以为在日志文件中的数据实际在内存中。
这里,我们提供了一个LogFlusher的类。它调用 HLog.optionalSync(),后者根据 hbase.regionserver.optionallogflushinterval (默认是10秒),定期调用Hlog.sync()。另外,HLog.doWrite()也会根据
hbase.regionserver.flushlogentries (默认100秒)定期调用Hlog.sync()。Sync() 本身调用HLog.Writer.sync(),它由SequenceFileLogWriter实现。
LogRoller
Log的大小通过$HBASE_HOME/conf/hbase-site.xml 的 hbase.regionserver.logroll.period 限制,默认是一个小时。所以每60分钟,会打开一个新的log文件。久而久之,会有一大堆的文件需要维护。首先,LogRoller调用 HLog.rollWriter(),定时滚动日志,之后,利用HLog.cleanOldLogs()可以清除旧的日志。它首先取得存储文件中的最大的 sequence number,之后检查是否存在一个log所有的条目的“sequence
number”均低于这个值,如果存在,将删除这个log。 每个region server维护一个HLog,而不是每一个region一个,这样不同region(来自不同的table)的日志会混在一起,这样做的目的是不断追加 单个文件相对于同时写多个文件而言,可以减少磁盘寻址次数,因此可以提高table的写性能。带来麻烦的时,如果一个region server下线,为了恢复其上的region,需要将region server上的log进行拆分,然后分发到其他region server上进行恢复。
HBase工作流程
Client
首先当一个请求产生时,HBase Client使用RPC(远程过程调用)机制与HMaster和HRegionServer进行通信,对于管理类操作,Client与HMaster进行RPC;对于数据读写操作,Client与HRegionServer进行RPC。
Zookeeper
HBase Client使用RPC(远程过程调用)机制与HMaster和HRegionServer进行通信,但如何寻址呢?由于Zookeeper中存储了-ROOT-表的地址和HMaster的地址,所以需要先到Zookeeper上进行寻址。
HRegionServer也会把自己以Ephemeral方式注册到Zookeeper中,使HMaster可以随时感知到各个HRegionServer的健康状态。此外,Zookeeper也避免了HMaster的单点故障。
HMaster
当用户需要进行Table和Region的管理工作时,就需要和HMaster进行通信。HBase中可以启动多个HMaster,通过Zookeeper的Master Eletion机制保证总有一个Master运行。
管理用户对Table的增删改查操作
管理HRegionServer的负载均衡,调整Region的分布
在Region Split后,负责新Region的分配
在HRegionServer停机后,负责失效HRegionServer上的Regions迁移
HRegionServer
当用户需要对数据进行读写操作时,需要访问HRegionServer。HRegionServer存取一个子表时,会创建一个HRegion对象,然后对表的每个列族创建一个Store实例,每个Store都会有一个 MemStore和0个或多个StoreFile与之对应,每个StoreFile都会对应一个HFile, HFile就是实际的存储文件。因此,一个HRegion有多少个列族就有多少个Store。 一个HRegionServer会有多个HRegion和一个HLog。
当HStore存储是HBase的核心了,其中由两部分组成:MemStore和StoreFiles。 MemStore是Sorted Memory Buffer,用户
写入数据首先 会放在MemStore,当MemStore满了以后会Flush成一个 StoreFile(实际存储在HDHS上的是HFile),当StoreFile文件数量增长到一定阀值,就会触发Compact合并操作,并将多个StoreFile合并成一个StoreFile,合并过程中会进行版本合并和数据删除,因此可以看出HBase其实只有增加数据,所有的更新和删除操作都是在后续的compact过程中进行的,这使得用户的 读写操作只要进入内存中就可以立即返回,保证了HBase I/O的高性能。
HBase Put流程
下面是put流程的时序图:
客户端:
客户端发起Put写请求,讲put写入writeBuffer,如果是批量提交,写满缓存后自动提交
根据rowkey将put吩咐给不同regionserver
服务端:
RegionServer将put按rowkey分给不同的region
Region首先把数据写入wal
wal写入成功后,把数据写入memstore
Memstore写完后,检查memstore大小是否达到flush阀值
如果达到flush阀值,将memstore写入HDFS,生成HFile文件
HBase Compact &&Split
当StoreFile文件数量增长到一定阀值,就会触发Compact合并操作,并将多个StoreFile合并成一个StoreFile,当这个StoreFile大小超过一定阀值后,会触发Split操作,同时把当前Region Split成2个Region,这是旧的Region会下线,新Split出的2个Region会被HMaster分配到相应的HregionServer上,使得原先1个Region的压力得以分散到2个Region上。
如下图四个Storefile文件(从memstore文件经过flush而得到,默认64M的storefile文件)经过Compact合并成一个大的256M storefile文件,当设定的Region阀值为128M时,就会Split为两个128M的Storefile文件,然后HMaster再把这两个storefile文件分配到不停地Regionserver上。
HFile
HBase中所有的数据文件都存储在Hadoop HDFS上,主要包括两种文件类型:
Hfile:HBase中KeyValue数据的存储格式,HFile是Hadoop的 二进制格式文件,实际上StoreFile就是对Hfile做了轻量级包装,即StoreFile底层就是HFile
HLog File:HBase中WAL(write ahead log)的存储格式,物理上是Hadoop的Sequence File
HFile文件是不定长的,长度固定的只有其中的两块:Trailer和FileInfo。
Trailer中有指针指向其他数据块的起始点,FileInfo记录了文件的一些meta信息。 Data Block是hbase io的基本单元,为了提高效率,HRegionServer中有基于LRU的block cache机制。
每个Data块的大小可以在创建一个Table的时候通过参数指定(默认块大小64KB),大号的Block有利于顺序Scan,小号的 Block利于随机查询。
每个Data块除了开头的Magic以外就是一个个KeyValue对拼接而成,Magic内容就是一些随机数字,目的是防止数 据损坏,结构如下。
上图可知,开始是两个固定长度的数值,分别表示key的长度和alue的长度。紧接着是Key,开始是固定长度的数值,表示RowKey的长度,紧接着是RowKey,然后是固定长度的数值,表示Family的长度,然后是Family,接着是Qualifier,然后是两个固定长度的数值,表示Time Stamp和Key Type(Put/Delete)。Value部分没有那么复杂的结构,就是纯粹的二进制数据。
优化HBase支撑系统
(1)硬件选择
总的原则是,根据业务情况和集群规模大小选择合理的硬件。
(2)网络配置
基于当前阶段硬件的典型分布式系统都会受到网络的限制,HBase也不例外。在节点和机架顶置交换机之间建议采用10Gb以太网交换机。千万不要过于满额配置地使用网络,否则在高负载时,会影响HBase应用系统的性能。
(3)操作系统
一般情况下,只要使用Hadoop和HBase,操作系统通常选择Linux。可以选择Red Hat Enterprise Linux,CentOS,也可以选择成功部署过的其他操作系统。
(4)本地文件系统
本地Linux文件系统在HBase集群体系里起到了重要作用,并且严重影响到HBase的性能。虽然EXT4是推荐使用的本地文件系统,但没有大规模使用,相反EXT3和XFS已经在生产系统里得到成功使用,建议使用EXT3和XFS作为本地文件系统。
(5)HDFS
根据业务访问特点优化
根据业务访问特点,将Hbase的工作负载大致分为以下四类:
(1)随机读密集型
对于随机读密集型工作负载,高效利用缓存和更好地索引会给HBase系统带来更高的性能。
(2)顺序读密集型
对于顺序读密集型工作负载,读缓存不会带来太多好处;除非顺序读的规模很小并且限定在一个特定的行键范围内,否则很可能使用缓存会比不使用缓存需要更频繁地访问硬盘。
(3)写密集型
写密集型工作负载的优化方法需要有别于读密集型负载。缓存不再起到重要作用。写操作总是进入MemStore,然后被刷写生成新的Hfile,以后再被合并。获得更好写性能的办法是不要太频繁刷写、合并或者拆分,因为在这段时间里IO压力上升,系统会变慢
(4)混合型
对于完全混合型工作负载,优化方法会变得复杂些。优化时,需要混合调整多个参数来得到一个最优的组合。
其它角度来优化HBase性能
(1)JVM垃圾回收优化
(2)本地memstore分配缓存优化
(3)Region拆分优化
(4)Region合并优化**
(5)Region预先加载优化
(6)负载均衡优化
(7)启用压缩
(8)GZIP、snappy、lzo,推荐snappy,压缩比稍差于lzo;但是压缩速度高于lzo,并且与lzo有差不多的 解压缩速度。
(9)进行预分区,从而避免自动split,提高hbase响应速度
(10)避免出现region热点现象,启动按照table级别进行balance
Hbase记录-Hbase介绍的更多相关文章
- Hbase记录-Hbase基础概念
HBase是什么? HBase是建立在Hadoop文件系统之上的分布式面向列的数据库.它是一个开源项目,是横向扩展的. HBase是一个数据模型,类似于谷歌的大表设计,可以提供快速随机访问海量结构化数 ...
- Hbase记录-Hbase shell使用
HBase Shell HBase包含可以与HBase进行通信的Shell. HBase使用Hadoop文件系统来存储数据.它拥有一个主服务器和区域服务器.数据存储将在区域(表)的形式.这些区域被分割 ...
- Hbase记录-ZooKeeper介绍
ZooKeeper是一个分布式协调服务来管理大量的主机.协调和管理在分布式环境的一个服务是一个复杂的过程.ZooKeeper 简单解决了其结构和API这个问题.ZooKeeper允许开发人员能够专注于 ...
- Hbase记录-HBase性能优化指南
垃圾回收优化当region服务器处理大量的写入负载时,繁重的任务会迫使JRE默认的内存分配策略无法保证程序的稳定性 所以我们可能需要对region服务器的垃圾回收机制进行一些参数调整(因为master ...
- Hbase记录-HBase增删改查
HBase创建数据 本章将介绍如何在HBase表中创建的数据.要在HBase表中创建的数据,可以下面的命令和方法: put 命令, add() - Put类的方法 put() - HTable 类 ...
- Hbase记录-HBase客户端API
本章介绍用于对HBase表上执行CRUD操作的HBase Java客户端API. HBase是用Java编写的,并具有Java原生API.因此,它提供了编程访问数据操纵语言(DML). HBaseCo ...
- Hbase记录-Hbase shell使用命令
1.进入hbase shell 执行./bin/hbase shell 2.进入后,help 帮助信息,如可以使用help 'create' 3.创建表:create 'test','cf' 表 ...
- Hbase记录-hbase部署
#版本支持 #官网下载二进制包,解压到/usr/app下,配置/etc/profile: export HBASE_HOME=/usr/app/hbase export PATH=$HBASE_HOM ...
- Hbase记录-Hbase配置项
hbase.tmp.dir:本地文件系统的临时目录,默认是java.io.tmpdir/hbase−java.io.tmpdir/hbase−{user.name}: hbase.rootdir:hb ...
随机推荐
- 『编程题全队』Beta 阶段冲刺博客一
1.提供当天站立式会议照片一张 2.每个人的工作 (有work item 的ID) (1) 昨天已完成的工作 孙志威: 1.讨论并制定了Beta阶段的计划 孙慧君: 1.Beta阶段任务的认领 黄华林 ...
- HTML 页面的 批量删除的按钮
function delAll(){ var sid=""; $("[name='ids']:checked").each(function(){ sid+=$ ...
- Eclipse版本列表
https://wiki.eclipse.org/Older_Versions_Of_Eclipse http://blog.csdn.net/jaycee110905/article/details ...
- [转帖]老狼:你知道哪些关于 Windows 10 的骚操作?
作者:老狼链接:https://www.zhihu.com/question/265781599/answer/579939418来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注 ...
- GIL全局解释器锁+GIL全局解释器锁vs互斥锁+定时器+线程queue+进程池与线程池(同步与异步)
以多线程为例写个互斥锁 from threading import Thread ,Lockimport timemutex = Lock() n = 100 def task(): global n ...
- python拉格朗日插值
#拉格朗日插值代码 import pandas as pd #导入数据分析库Pandas from scipy.interpolate import lagrange #导入拉格朗日插值函数 inpu ...
- GlusterFS 增删节点及改变复制份数
一.增加节点 1.需要主机添加到主机池中 gluster peer probe server3 gluster peer probe server4 2.查看状态 3.添加节点并复制2份(增加复制 ...
- caffe实现多任务学习
Github: https://github.com/Haiyang21/Caffe_MultiLabel_Classification Blogs 1. 采用多label的lmdb+Slice L ...
- [代码]--C#action和func的使用
以前我都是通过定义一个delegate来写委托的,但是最近看一些外国人写的源码都是用action和func方式来写,当时感觉对这很陌生所以看起源码也觉得陌生,所以我就花费时间来学习下这两种方式,然后发 ...
- docker --Nexus仓库
Nexus 简介 Nexus 是个仓库管理器,目前主要分2大版本:2.X 和 3.X.2.X 主要支持的格式是Maven.P2.OBR.Yum.3.X主要支持的是Docker.NuGet.npm.Bo ...