初学STM32,感觉最蛋疼的是它的时钟系统,每次看到它的那个时钟树就有点晕,虽然看了很多这方面的资料,甚至也已经写过很多STM32的模块代码,做过一些小项目,但一直还是对这一块模模糊糊,似懂非懂,所以想把自己对它的一点点认识写出来,一步一步,直到完全搞通的那一天,(这些内容并非自己原创,只是想帮助自己理解)

在STM32中,有五个时钟源,为HSI、HSE、LSI、LSE、PLL。

HSI是高速内部时钟,RC振荡器,频率为8MHz。

HSE是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率范围为4MHz~16MHz。

LSI是低速内部时钟,RC振荡器,频率为40kHz。

LSE是低速外部时钟,接频率为32.768kHz的石英晶体。

PLL为锁相环倍频输出,其时钟输入源可选择为HSI/2、HSE或者HSE/2。倍频可选择为2~16倍,但是其输出频率最大不得超过72MHz(F103最大72M,F20x最大为120M,F407最大为168M)。

时钟树见中文参考手册;

用户可通过多个预分频器配置AHB总线、高速APB2总线和低速APB1总线的频率。AHB和APB2域的最大频率是72MHZ。APB1域的最大允许频率是36MHZ。SDIO接口的时钟频率固定为HCLK/2。

40kHz的LSI供独立看门狗IWDG使用,另外它还可以被选择为实时时钟RTC的时钟源。另外,实时时钟RTC的时钟源还可以选择LSE,或者是HSE的128分频。RTC的时钟源通过RTCSEL[1:0]来选择。

STM32中有一个全速功能的USB模块,其串行接口引擎需要一个频率为48MHz的时钟源。该时钟源只能从PLL输出端获取,可以选择为1.5分频或者1分频,也就是,当需要使用USB模块时,PLL必须使能,并且时钟频率配置为48MHz或72MHz。

另外,STM32还可以选择一个PLL输出的2分频、HSI、HSE、或者系统时钟SYSCLK输出到MCO脚(PA8)上。系统时钟SYSCLK,是供STM32中绝大部分部件工作的时钟源,它可选择为PLL输出、HSI或者HSE,(一般程序中采用PLL倍频到72Mhz)在选择时钟源前注意要判断目标时钟源是否已经稳定振荡。Max=72MHz,它分为2路,1路送给I2S2、I2S3使用的I2S2CLK,I2S3CLK;另外1路通过AHB分频器分频(1/2/4/8/16/64/128/256/512)分频后送给以下8大模块使用:

①送给SDIO使用的SDIOCLK时钟。

②送给FSMC使用的FSMCCLK时钟。

③送给AHB总线、内核、内存和DMA使用的HCLK时钟。

④通过8分频后送给Cortex的系统定时器时钟(SysTick)。

⑤直接送给Cortex的空闲运行时钟FCLK。

⑥送给APB1分频器。APB1分频器可选择1、2、4、8、16分频,其输出一路供APB1外设使用(PCLK1,最大频率36MHz),另一路送给定时器(Timer2-7)2、3、4倍频器使用。该倍频器可选择1或者2倍频,时钟输出供定时器2、3、4、5、6、7使用。

⑦送给APB2分频器。APB2分频器可选择1、2、4、8、16分频,其输出一路供APB2外设使用(PCLK2,最大频率72MHz),另一路送给定时器(Timer1、Timer8)1、2倍频器使用。该倍频器可选择1或者2倍频,时钟输出供定时器1和定时器8使用。另外,APB2分频器还有一路输出供ADC分频器使用,分频后得到ADCCLK时钟送给ADC模块使用。ADC分频器可选择为2、4、6、8分频。

⑧2分频后送给SDIO AHB接口使用(HCLK/2)。

时钟输出的使能控制

在以上的时钟输出中有很多是带使能控制的,如AHB总线时钟、内核时钟、各种APB1外设、APB2外设等。当需要使用某模块时,必需先使能对应的时钟。需要注意的是定时器的倍频器,当APB的分频为1时,它的倍频值为1,否则它的倍频值就为2。

连接在APB1(低速外设)上的设备有:电源接口、备份接口、CAN、USB、I2C1、I2C2、UART2、UART3、SPI2、窗口看门狗、 Timer2、Timer3、Timer4。注意USB模块虽然需要一个单独的48MHz时钟信号,但它应该不是供USB模块工作的时钟,而只是提供给串行接口引擎(SIE)使用的时钟。USB模块工作的时钟应该是由APB1提供的。

连接在APB2(高速外设)上的设备有:GPIO_A-E、USART1、ADC1、ADC2、ADC3、TIM1、TIM8、SPI1、AFIO;

使用HSE时钟,程序设置时钟参数流程:

1、将RCC寄存器重新设置为默认值 RCC_DeInit;

2、打开外部高速时钟晶振HSE      RCC_HSEConfig(RCC_HSE_ON);

3、等待外部高速时钟晶振工作 HSEStartUpStatus = RCC_WaitForHSEStartUp();

4、设置AHB时钟      RCC_HCLKConfig;

5、设置高速AHB时钟     RCC_PCLK2Config;

6、设置低速速AHB时钟   RCC_PCLK1Config;

7、设置PLL              RCC_PLLConfig;

8、打开PLL              RCC_PLLCmd(ENABLE);

9、等待PLL工作while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET)

10、          设置系统时钟        RCC_SYSCLKConfig;

11、          判断是否PLL是系统时钟     while(RCC_GetSYSCLKSource() != 0x08)

12、          打开要使用的外设时钟RCC_APB2PeriphClockCmd()/RCC_APB1PeriphClockCmd()

关于SystemInit函数

初学时容易让人疑惑的是,在我们源代码的工程项目中,我们并没有去手动设置系统时钟,很多时候根本没去管它,但是我们写的跑马灯、GPIO控制、串口通信等小程序依然能够正常运行,这是为什么呢?

其实根本原因就是系统自己已经替我们设置过了,有一个默认的设置函数(SystemInit()),很奇怪我们在主函数中看不到它的踪影,因为系统把它写在启动文件(startup_xxx.s)中了,并且在主函数之前执行,所以我们看不到,如下图:

  

关于STM32时钟系统的更多相关文章

  1. STM32入门系列-STM32时钟系统,STM32时钟树

    时钟对于单片机来说是非常重要的,它为单片机工作提供一个稳定的机器周期从而使系统能够正常运行.时钟系统犹如人的心脏,一旦有问题整个系统就崩溃.我们知道STM32属于高级单片机,其内部有很多的外设,但不是 ...

  2. STM32时钟系统的配置寄存器和源码分析

    一.时钟系统 概述 时钟是单片机运行的基础,时钟信号推动单片机内各个部分执行相应的指令,时钟系统就是CPU的脉搏,决定cpu速率. STM32有多个时钟来源的选择,为什么 STM32 要有多个时钟源呢 ...

  3. STM32时钟系统

    一.在STM32中,有五个时钟源,为HSI.HSE.LSI.LSE.PLL. ①HSI是高速内部时钟,RC振荡器,频率为8MHz. ②HSE是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率 ...

  4. STM32时钟系统之利用 systick 定时器来实现准确的延时。

    本篇文章带着大家来认识一下 STM32 的时钟系统,以及利用 systick 定时器来实现一个比较准确的延时. 我们首先从时钟说起,时钟在MCU中的作用,就好比于人类的心脏一样不可或缺.STM32 的 ...

  5. STM32入门系列-STM32时钟系统,时钟使能配置函数

    之前的推文中说到,当使用一个外设时,必须先使能它的时钟.怎么通过库函数使能时钟呢?如需了解寄存器配置时钟,可以参考<STM32F10x中文参考手册>"复位和时钟控制(RCC)&q ...

  6. STM32入门系列-STM32时钟系统,自定义系统时钟

    在时钟树的讲解中我们知道,通过修改PLLMUL中的倍系数值(2-16)可以改变系统的时钟频率.在库函数中也有对时钟倍频因子配置的函数,如下: void RCC_PLLConfig(uint32_t R ...

  7. STM32入门系列-STM32时钟系统,时钟初始化配置函数

    在前面推文的介绍中,我们知道STM32系统复位后首先进入SystemInit函数进行时钟的设置,然后进入主函数main.那么我们就来看下SystemInit()函数到底做了哪些操作,首先打开我们前面使 ...

  8. STM32入门-STM32时钟系统,时钟初始化配置函数

    在前面推文的介绍中,我们知道STM32系统复位后首先进入SystemInit函数进行时钟的设置,然后进入主函数main.那么我们就来看下SystemInit()函数到底做了哪些操作,首先打开我们前面使 ...

  9. STM32 时钟系统

    1.在 STM32F4 中,有 5 个最重要的时钟源,为 HSI.HSE.LSI.LSE.PLL.其中 PLL 实际是分为两个时钟源,分别为主 PLL 和专用 PLL. 2.   ①.LSI 是低速内 ...

随机推荐

  1. tensorflow 在加载大型的embedding模型参数时,会遇到cannot be larger than 2GB

    这种问题是,对于每一个变量 variable 由于是基于protobuf存在这大小限制(2G),这个时候,我们需要将embedding拆开,拆分成N等分,来使得每一个 variable都在2G以下; ...

  2. VC 预定义宏

    列出预定义的 ANSI C和C++ Microsoft实现宏. 编译器识别预定义的ANSI C宏,并且Microsoft C++实现提供几个更多.这些宏不带参数,并且不能重定义.下面列出的某些预定义的 ...

  3. Fluent动网格【13】:网格光顺总结及实例

    光顺(Smoothing)方法是最基本的网格节点更新方法.Fluent提供了三种光顺方法: Spring弹簧光顺 Diffusion扩散光顺 Linearly Elastic Solid光顺 三种方法 ...

  4. docker save提示no space left on device错误

    使用df -h看了看,硬盘的确是够用的,于是排除了是硬盘容量的问题. 再细看错误提示: 目录是/var/lib/docker/tmp/docker-export-xxxx/xxxxx,猜测是docke ...

  5. css实现高度或者宽度不固定的div元素垂直左右居中

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  6. Spark RDD、DataFrame原理及操作详解

    RDD是什么? RDD (resilientdistributed dataset),指的是一个只读的,可分区的分布式数据集,这个数据集的全部或部分可以缓存在内存中,在多次计算间重用. RDD内部可以 ...

  7. C语言 goto语句

    /* goto语句 */ #include <stdio.h> #include <stdlib.h> #include <string.h> /* goto语句也 ...

  8. error connecting: Timeout expired 超时时间已到. 达到了最大池大小 错误及Max Pool Size设置

    [参考]Timeout expired 超时时间已到. 达到了最大池大小 错误及Max Pool Size设置 [参考][数据库-MySql] MySqlConnection error connec ...

  9. 智能聊天机器人——基于RASA搭建

    前言: 最近了解了一下Rasa,阅读了一下官方文档,初步搭建了一个聊天机器人. 官方文档:https://rasa.com/docs/ 搭建的chatbot项目地址: https://github.c ...

  10. 基于 SOA 概念 RPC 框架 的 消息中心 云部署 设计 漫谈

    一.背景 假设有一个系统的最大并发量有2000TPS左右.同时该系统有闲时和忙时,希望可以随时进行拓展和削减服务能力,以节省服务器费用开销. 该系统能提供站内消息.短信.app消息.邮箱的一个消息系统 ...