SQL执行计划解读
声明
- 5.6中desc看不到show warnings,也看不到filtered列
- 5.7的desc等于5.6的desc extended,这样可以看show warnings,5.6中filtered列非常不准,5.7好一些
先看一个执行计划
(root@localhost) [test]> desc select * from l;
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-------+
Ⅰ、展开分析每个字段
id列——表示sql执行的顺序
- id相等,一般是简单关联,从上往下看即可
- id不相等,一般为出现了子查询,先看大的再看小的
- 同时存在相等与不相等,一般相等的为一组,先看大的再看小的
有个潜规则叫:id相等从上往下看,id不等从下往上看
select_type——select类型,用于区分子查询,关联查询等
- SIMPLE:简单查询,不包含子查询与union
- PRIMARY:查询中包含子查询,最外层查询则被标记为PRIMARY
- UNION:使用union连接select时,从第二个select开始都是UNION
- SUBQUERY:select或者where后面的子查询(非from之后)都可能是SUBQUERY
- DERIVED:在from中包含的子查询被标记为DERIVED(派生表)
- DEPENDENT SUBQUERY:依赖外部查询的SUBQUERY
- UNION RESULT:UNION的结果,对应ID为NULL
table——输出记录的表
- 查询中使用别名,则此处显示别名
- 不涉及表的操作,则显示为NULL
- < derivedN > / < subqueryN > 由ID为N的查询产生的结果
- < unionM,N > 由ID为M,N查询union产生的结果集
type——访问类型
- system:const的特例,表中只有一行记录
- const:使用唯一索引或主键,只取一行数据
- eq_ref:多表join时,驱动表只返回一行数据,且这行数据是被驱动表的主键或唯一索引,且必须not null
- ref:非唯一索引的扫描,通常为非唯一索引的等值查询
- range:检索给定范围的行,使用一个索引来选择行,通常为where条件中出现between、<、>、in、like等
- index:full index scan,根据索引读全表
- ALL:full table scan,扫整个数据文件
- fulltext:全文索引
- ref_or_null:使用普通索引进行查询,但要查询null值
- index_merge or:查询会使用到的类型,可能一条sql使用了两个索引,然后merge
- unique_subquery和index_subquery:很少出现 前一个是子查询的列是唯一索引,第二个是子查询的列是普通索引
- MATERIALIZED:物化子查询
主要优化对象是index和ALL,有两种情况可以考虑保留index
只查询索引列,不回表或者使用索引进行排序或者聚合
possible_keys
优化器可能使用到的索引
key
优化器实际选择的索引
key_len
使用索引的字节长度
ref
- 等值查询会显示const
- 连接查询的话被驱动表此处显示驱动表的join列
rows
优化器预估的记录数量
filtered
根据条件过滤得到的记录的百分比
extra
- Using index:优化器只需使用索引就能得到结果 索引覆盖
- Using index condition:优化器试用index condition pushdown优化,二级索引
- Using index for group by:优化器只需使用索引就能处理group by 或者distinct语句
上面这3个基本上忽略吧,没什么参数好调的 - Using temporary:使用临时表,常见于order by,group by
- Using filesort:使用额外的排序 调整sort_buffer_size
- Using join buffer:优化器需要使用join buffer 调整join_buffer_size
- Using MRR:优化器使用MRR优化 调整read_cache_size
- Using temporary:优化器需要使用临时表 调整tmp_table_size
- Using where:优化器使用where过滤
Ⅱ、分析两个执行计划看看
案例1
(root@localhost) [dbt3]> DESC SELECT
-> *
-> FROM
-> part
-> WHERE
-> p_partkey IN (SELECT
-> l_partkey
-> FROM
-> lineitem
-> WHERE
-> l_shipdate BETWEEN '1997-01-01' AND '1997-02-01')
-> ORDER BY p_retailprice DESC
-> LIMIT 10;
+----+--------------+-------------+------------+--------+----------------------------------------------+--------------+---------+---------------------+--------+----------+----------------------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+--------------+-------------+------------+--------+----------------------------------------------+--------------+---------+---------------------+--------+----------+----------------------------------+
| 1 | SIMPLE | part | NULL | ALL | PRIMARY | NULL | NULL | NULL | 197706 | 100.00 | Using where; Using filesort |
| 1 | SIMPLE | <subquery2> | NULL | eq_ref | <auto_key> | <auto_key> | 5 | dbt3.part.p_partkey | 1 | 100.00 | NULL |
| 2 | MATERIALIZED | lineitem | NULL | range | i_l_shipdate,i_l_suppkey_partkey,i_l_partkey | i_l_shipdate | 4 | NULL | 138672 | 100.00 | Using index condition; Using MRR |
+----+--------------+-------------+------------+--------+----------------------------------------------+--------------+---------+---------------------+--------+----------+----------------------------------+
3 rows in set, 1 warning (0.01 sec)
id 顺序
1 ② part表(外表)和subquery2(id=2产生的14w记录的表)进行关联,对于part表中所有记录都要关联,一共是19w行,再和l_partkey进行关联,最后排序用到using filesort
1 ③ 内表要加索引,所以mysql优化器自动把第一步取出来的数据添加了一个唯一索引,in里面是去重的(这其实是做了一个物化),所以是唯一索引,eq_ref表示通过唯一索引进行关联,和外表中的p_partkey关联
2 ① 先查lineitem表,是一个range范围查询,使用了i_l_shipdate索引,l_shipdate是date类型,占用四个字节,预估14万行记录,过滤出百分之百,materiallized表示产生了一张实际的表,并且去添加了索引,l_partkey,唯一索引(in里面是去重的)
注意一个细节
(root@localhost) [dbt3]> DESC SELECT
-> *
-> FROM
-> part
-> WHERE
-> p_partkey IN (SELECT
-> l_partkey
-> FROM
-> lineitem
-> WHERE
-> l_shipdate BETWEEN '1997-01-01' AND '1997-01-07')
-> ORDER BY p_retailprice DESC
-> LIMIT 10;
+----+--------------+-------------+------------+--------+----------------------------------------------+--------------+---------+-----------------------+-------+----------+----------------------------------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+--------------+-------------+------------+--------+----------------------------------------------+--------------+---------+-----------------------+-------+----------+----------------------------------------------+
| 1 | SIMPLE | <subquery2> | NULL | ALL | NULL | NULL | NULL | NULL | NULL | 100.00 | Using where; Using temporary; Using filesort |
| 1 | SIMPLE | part | NULL | eq_ref | PRIMARY | PRIMARY | 4 | <subquery2>.l_partkey | 1 | 100.00 | NULL |
| 2 | MATERIALIZED | lineitem | NULL | range | i_l_shipdate,i_l_suppkey_partkey,i_l_partkey | i_l_shipdate | 4 | NULL | 29148 | 100.00 | Using index condition; Using MRR |
+----+--------------+-------------+------------+--------+----------------------------------------------+--------------+---------+-----------------------+-------+----------+----------------------------------------------+
3 rows in set, 1 warning (0.00 sec)
驱动表就变成了subquerry2,这时候优化器又把子查询作为了外表,说明优化器很聪明
in的子查询,优化器会帮你重写成join,并且帮你选择子查询到底是内表还是外表
(root@localhost) [dbt3]> DESC select
-> a.*
-> from
-> part a,
-> (select distinct
-> l_partkey
-> from
-> lineitem
-> where l_shipdate between '1997-01-01' and '1997-02-01') b
-> where
-> a.p_partkey=b.l_partkey
-> order by a.p_retailprice desc
-> limit 10;
+----+-------------+------------+------------+--------+----------------------------------------------+--------------+---------+-------------+--------+----------+---------------------------------------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+------------+------------+--------+----------------------------------------------+--------------+---------+-------------+--------+----------+---------------------------------------------------+
| 1 | PRIMARY | <derived2> | NULL | ALL | NULL | NULL | NULL | NULL | 138672 | 100.00 | Using where; Using temporary; Using filesort |
| 1 | PRIMARY | a | NULL | eq_ref | PRIMARY | PRIMARY | 4 | b.l_partkey | 1 | 100.00 | NULL |
| 2 | DERIVED | lineitem | NULL | range | i_l_shipdate,i_l_suppkey_partkey,i_l_partkey | i_l_shipdate | 4 | NULL | 138672 | 100.00 | Using index condition; Using MRR; Using temporary |
+----+-------------+------------+------------+--------+----------------------------------------------+--------------+---------+-------------+--------+----------+---------------------------------------------------+
3 rows in set, 1 warning (0.00 sec)
这么改写,b表永远是外表,子查询只是产生一个派生表,但是没办法给它建索引,如果子查询出来的结果集很大,这时候性能就不如in了,in的话优化器会把它作为内表
案例2
(root@localhost) [dbt3]> DESC select max(l_extendedprice)
-> from orders,lineitem
-> where o_orderdate between '1995-01-01' and '1995-01-31'
-> and l_orderkey=o_orderkey;
+----+-------------+----------+------------+-------+--------------------------------------------+---------------+---------+------------------------+-------+----------+--------------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+----------+------------+-------+--------------------------------------------+---------------+---------+------------------------+-------+----------+--------------------------+
| 1 | SIMPLE | orders | NULL | range | PRIMARY,i_o_orderdate | i_o_orderdate | 4 | NULL | 40696 | 100.00 | Using where; Using index |
| 1 | SIMPLE | lineitem | NULL | ref | PRIMARY,i_l_orderkey,i_l_orderkey_quantity | PRIMARY | 4 | dbt3.orders.o_orderkey | 3 | 100.00 | NULL |
+----+-------------+----------+------------+-------+--------------------------------------------+---------------+---------+------------------------+-------+----------+--------------------------+
2 rows in set, 1 warning (0.00 sec)
orderkey上有索引,但是没用,用的是pk,orders表示外表,根据过滤条件把数据过滤出来做外表,然后跟lineitem表关联,用的是pk,关联的列是orders.o_orderkey
如果强行走orderkey索引,成本很高,需要回表,通过主键不用回表
案例3
(root@localhost) [dbt3]> DESC select *
-> from
-> lineitem
-> where
-> l_shipdate <= '1995-12-32'
-> union
-> select
-> *
-> from
-> lineitem
-> where
-> l_shipdate >= '1997-01-01';
+----+--------------+------------+------------+------+---------------+------+---------+------+---------+----------+-----------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+--------------+------------+------------+------+---------------+------+---------+------+---------+----------+-----------------+
| 1 | PRIMARY | lineitem | NULL | ALL | i_l_shipdate | NULL | NULL | NULL | 5409799 | 33.33 | Using where |
| 2 | UNION | lineitem | NULL | ALL | i_l_shipdate | NULL | NULL | NULL | 5409799 | 50.00 | Using where |
|NULL| UNION RESULT | <union1,2> | NULL | ALL | NULL | NULL | NULL | NULL | NULL | NULL | Using temporary |
+----+--------------+------------+------------+------+---------------+------+---------+------+---------+----------+-----------------+
3 rows in set, 3 warnings (0.10 sec)
union result合并两张表 会using temporary,使用临时表,union会去重,所以又去建了临时表,在上面加了唯一索引,这里就用了两个索引,所以一个sql只能用一条索引是不对的
案例4
(root@localhost) [employees]> DESC SELECT
-> emp_no,
-> dept_no,
-> (SELECT
-> COUNT(1)
-> FROM
-> dept_emp t2
-> WHERE
-> t1.emp_no <= t2.emp_no) AS row_num
-> FROM
-> dept_emp t1;
+----+--------------------+-------+------------+-------+----------------+--------+---------+------+--------+----------+------------------------------------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+--------------------+-------+------------+-------+----------------+--------+---------+------+--------+----------+------------------------------------------------+
| 1 | PRIMARY | t1 | NULL | index | NULL | emp_no | 4 | NULL | 331570 | 100.00 | Using index |
| 2 | DEPENDENT SUBQUERY | t2 | NULL | ALL | PRIMARY,emp_no | NULL | NULL | NULL | 331570 | 33.33 | Range checked for each record (index map: 0x3) |
+----+--------------------+-------+------------+-------+----------------+--------+---------+------+--------+----------+------------------------------------------------+
2 rows in set, 2 warnings (0.00 sec)
对于这个sql,先执行了1再执行了2,2是dependent subquery,要依赖子查询,所以先执行了1,所以t1是外表,t2是内表,每次得关联33w * 33%次数,一共关联33w次,一共是33w * 10w次
行号问题,性能非常差
Ⅲ、补充
3.1 什么是物化?
通常来说查询的结果是不需要物化的,子查询产生的一张表,去重,加一个唯一键,上面还有个索引
A和B关联,B是子查询查出来的,本来这些数据都存放在内存中直接和A表关联,B肯定是外表,因为他没有索引,in的话就会去重,加唯一键,这时候就既可以是外表也可以是内表,这就是物化
explain format=json
这个东西还是蛮好用的,可以用来看看sql的执行成本
mysql优化器会选择一个成本最小的方式作为执行计划
SQL执行计划解读的更多相关文章
- sql执行计划(书中个人总结)
一.什么是sql执行计划 执行一条sql,以最快最低消耗获取出所需数据的一个执行过程. 二.如何获取执行计划 执行计划获取的六种方式: 1.explain plan for 优点和缺点: 2.set ...
- Atitit sql执行计划
Atitit sql执行计划 1.1. 首先要搞明白什么叫执行计划? 执行计划是数据库根据SQL语句和相关表的统计信息作出的一个查询方案,这个方案是由查询优化器自动分析产生的 Oracle中的执行计划 ...
- 查看SQL执行计划
一用户进入某界面慢得要死,查看SQL执行计划如下(具体SQL语句就不完全公布了,截断的如下): call count cpu elapsed disk ...
- 查看Oracle SQL执行计划的常用方式
在查看SQL执行计划的时候有很多方式 我常用的方式有三种 SQL> explain plan for 2 select * from scott.emp where ename='KING'; ...
- sql执行计划解析案例(二)
sql执行计划解析案例(二) 今天是2013-10-09,本来以前自己在专注oracle sga中buffer cache 以及shared pool知识点的研究.但是在研究cache buffe ...
- Oracle之SQL优化专题01-查看SQL执行计划的方法
在我2014年总结的"SQL Tuning 基础概述"中,其实已经介绍了一些查看SQL执行计划的方法,但是不够系统和全面,所以本次SQL优化专题,就首先要系统的介绍一下查看SQL执 ...
- Oracle中SQL调优(SQL TUNING)之最权威获取SQL执行计划大全
该文档为根据相关资料整理.总结而成,主要讲解Oracle数据库中,获取SQL语句执行计划的最权威.最正确的方法.步骤,此外,还详细说明了每种方法中可选项的意义及使用方法,以方便大家和自己日常工作中查阅 ...
- DB查询分析器7.01新增的周、月SQL执行计划功能
DB查询分析器7.01新增的周.月SQL执行计划功能 马根峰 (广东联合电子服务股份有限公司, 广州 510300) 1 引言 中国本土 ...
- SQL优化 MySQL版 -分析explain SQL执行计划与笛卡尔积
SQL优化 MySQL版 -分析explain SQL执行计划 作者 Stanley 罗昊 [转载请注明出处和署名,谢谢!] 首先我们先创建一个数据库,数据库中分别写三张表来存储数据; course: ...
随机推荐
- R语言中的回归诊断-- car包
如何判断我们的线性回归模型是正确的? 1.回归诊断的基本方法opar<-par(no.readOnly=TRUE) fit <- lm(weight ~ height, data = wo ...
- Linux内存、性能诊断中vmstat命令的详解
vmstat命令是最常见的Linux/Unix监控工具,可以展现给定时间间隔的服务器的状态值,包括服务器的CPU使用率,内存使用,虚拟内存 交换情况,IO读写情况.相比top,通过vmstat可以看到 ...
- win下查找端口占用进程并定位到具体程序
很多时候,我们会在服务器上运行多个java程序,但是在任务管理器里看到的都是一样的图标,想要找到我们想要的那个进程咋办呢? 列出所有端口进程 C:\Users\desp>netstat -ano ...
- 初识go的tomb包
在分析github.com/hpcloud/tail 这个包的源码的时候,发现这个包里用于了一个另外一个包,自己也没有用过,但是这个包在tail这个包里又起来非常大的作用 当时并没有完全弄明白这个包的 ...
- Atitit 项目版本管理gitflow 与 Forking的对比与使用
Atitit 项目版本管理gitflow 与 Forking的对比与使用 1.1. 版本管理的历史 csv>>svn >git 1 1.2. gitflow的核心是分版本管理,for ...
- 【原创 Hadoop&Spark 动手实践 13】Spark综合案例:简易电影推荐系统
[原创 Hadoop&Spark 动手实践 13]Spark综合案例:简易电影推荐系统
- 消息中间件系列四:RabbitMQ与Spring集成
一.RabbitMQ与Spring集成 准备工作: 分别新建名为RabbitMQSpringProducer和RabbitMQSpringConsumer的maven web工程 在pom.xml文 ...
- box-shadow比较美观的阴影
无奈每次调阴影都特别丑,这次我把它记下来,下次不调了 box-shadow: 0 5px 15px -5px rgba(0,0,0,.5);
- shell模板-跨目录执行,彩色输出,临时文件,行遍历文件
参数检查 #!/bin/bash set -e if [ ! -n "$1" ];then echo "Usage: #cmd <> []" exi ...
- Spark学习之常用算子介绍
1. reduceByKey reduceByKey的作用对像是(key, value)形式的rdd,而reduce有减少.压缩之意,reduceByKey的作用就是对相同key的数据进行处理,最终每 ...