ArcTan
When the ArcTan functional configuration is selected, the input vector (X_IN,Y_IN) is rotated
(using the CORDIC algorithm) until the Y component is zero. This generates the output
angle, Atan(Y_IN/X_IN).
The inputs, X_IN and Y_IN, are limited to the ranges given in Table 3-5 when coarse rotation
is set. Inputs outside these ranges produce unpredictable outputs. See Input/Output Data
Representation for more information about CORDIC binary data formats.
An optional coarse rotation module is provided to extend the range of inputs X_IN and Y_IN
to the full circle. For this functional configuration, the coarse rotation module is selected by
default, but can be manually deselected. See Advanced Configuration Parameters for more
information. When this option is not set, inputs must be constrained to lie in the first
quadrant, -Pi/4 to + Pi/4.
The compensation scaling module is disabled for the ArcTan functional configuration as no
magnitude data is output. The ArcTan of a zero length vector, (0,0), is indeterminate and the
output angle generated by the core is undefined.
The accuracy of the output angle from the CORDIC vector translation algorithm is limited by
the number of significant magnitude bits of the input vector (X_IN, Y_IN). See Output
Quantization Error for more information.

arctan的更多相关文章

  1. SPOJ ARCTAN

    POJ1183 除输入方式外与这道题完全一样 题目大意是给定一个a 求最小的满足arctan(1/A)=arctan(1/B)+arctan(1/C) 的B+C的最小值 根据上述递推规律,我们只要从2 ...

  2. Use of Function Arctan

    Use of Function Arctan Time Limit:10000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu S ...

  3. 一个arctan积分的两种解法

    \[\Large\int_{0}^{1}\frac{\arctan x}{\sqrt{1-x^{2}}}\mathrm{d}x\] \(\Large\mathbf{Solution:}\) 首先第一种 ...

  4. 一个包含arctan与arctanh的积分

    \[\Large\int_0^1\frac{\arctan x \,\operatorname{arctanh} x\, \ln x}{x}\mathrm{d}x=\frac{\pi^2}{16}\m ...

  5. SPOJ ARCTAN (数论) Use of Function Arctan

    详细的题解见这里. 图片转自上面的博客 假设我们已经推导出来x在处取得最小值,并且注意到这个点是位于两个整点之间的,所以从这两个整数往左右两边枚举b就能找到b+c的最小值. 其实只用往一边枚举就够了, ...

  6. pascal中的xor,shr,shl,Int(),ArcTan(),copy,delete,pos和leftstr,RightStr等详解

    数学函数:Inc(i)使I:=I+1;Inc(I,b)使I:=I+b;Abs(x)求x的绝对值例:abs(-3)=3Chr(x)求编号x对应的字符. 例:Chr(65)=’A’chr(97)=’a’c ...

  7. simpson法计算arctan(1)-即pi/4

    对1/(1+x^2) 进行0到1的积分即使pi/4; 采用simpson方法 Func<double,double> func=(x)=>{ return 1/(1+ Math.Po ...

  8. 北京培训记day1

    数学什么的....简直是丧心病狂啊好不好 引入:Q1:前n个数中最多能取几个,使得没有一个数是另一个的倍数   答案:(n/2)上取整 p.s.取后n/2个就好了 Q2:在Q1条件下,和最小为多少 答 ...

  9. sift特征源码

    先贴上我对Opencv3.1中sift源码的注释吧,虽然还有很多没看懂.先从detectAndCompute看起 void SIFT_Impl::detectAndCompute(InputArray ...

随机推荐

  1. 控制input输入框光标的位置

    一:理解input, textarea元素在标准浏览器下两个属性selectionStart, selectionEnd. selectionStart: 该属性的含义是 选区开始的位置: selec ...

  2. *** Collection <__NSArrayM: 0x600000647380> was mutated while being enumerated.

    *** Collection <__NSArrayM: 0x600000647380> was mutated while being enumerated.

  3. Omi框架学习之旅 - 获取DOM节点 及原理说明

    虽然绝大部分情况下,开发者不需要去查找获取DOM,但是还是有需要获取DOM的场景,所以Omi提供了方便获取DOM节点的方式. 这是官网的话,但是我一直都需要获取dom,对dom操作,所以omi提供的获 ...

  4. android客服端+eps8266+单片机+路由器之远程控制系统

    用android客服端+eps8266+单片机+路由器做了一个远程控制的系统,因为自己是在实验室里,所以把实验室的门,灯做成了远程控制的. 控制距离有多远------只能说很远很远,只要你手机能上网的 ...

  5. ASP.NET Web API上实现 Web Socket - 转

    1. 什么是Web Socket Web Socket是Html5中引入的通信机制,它为浏览器与后台服务器之间提供了基于TCP的全双工的通信通道.用以替代以往的LongPooling等comet st ...

  6. java内存模型与volatile变量与Atomic的compareAndSet

    java分主内存和工作内存, 主内存是线程共享的, 工作内存是每个线程独有的. java对主内存的操作是通过工作内存间接完成的: 先拷贝主内存变量值到工作内存, 在工作内存操作这个变量的副本, 完成后 ...

  7. P3830 [SHOI2012]随机树

    P3830 [SHOI2012]随机树 链接 分析: 第一问:f[i]表示有i个叶子结点的时候的平均深度,$f[i] = \frac{f[i - 1] + 2 + f[i - 1] * (i - 1) ...

  8. vue + element 实现登录注册(自定义表单验证规则)

    注册页包含手机验证码登录和密码的二次验证. 效果如下: 实现代码: <template> <div> <div class="register-wrapper& ...

  9. vue 首页背景图片加载完成前增加 loading 效果 -- 使用 new Image() 实现

    1. 创建 loading 公用组件 <template> <div class="load-container"> <div class=" ...

  10. 【亲测有效】Github无法访问或者访问速度的解决方案

    我相信,很多朋友都遇到了 Github 访问速度过慢的问题,我也是在此记下笔记,方便以后拿来使用. 第一步.修改Hosts 通过问题的搜索了解到 github 访问很慢一般通过修改 hosts 文件解 ...