BZOJ3697采药人的路径——点分治
题目描述
采药人的药田是一个树状结构,每条路径上都种植着同种药材。
采药人以自己对药材独到的见解,对每种药材进行了分类。大致分为两类,一种是阴性的,一种是阳性的。
采药人每天都要进行采药活动。他选择的路径是很有讲究的,他认为阴阳平衡是很重要的,所以他走的一定是两种药材数目相等的路径。采药工作是很辛苦的,所以他希望他选出的路径中有一个可以作为休息站的节点(不包括起点和终点),满足起点到休息站和休息站到终点的路径也是阴阳平衡的。他想知道他一共可以选择多少种不同的路径。
输入
第1行包含一个整数N。
接下来N-1行,每行包含三个整数a_i、b_i和t_i,表示这条路上药材的类型。
输出
输出符合采药人要求的路径数目。
样例输入
1 2 0
3 1 1
2 4 0
5 2 0
6 3 1
5 7 1
样例输出
提示
对于100%的数据,N ≤ 100,000。
点分治经典题,因为答案符合逆运算,所以采用单步容斥统计答案。因为要求0,1边数相等,所以把0边的边权改为-1,这样只要路径和为0就是满足第一条的路径,又因为要有一个中间点,所以不妨设f[i][0/1]分别表示当前点到当前重心边权和为i且没有/有中间点的方案数;g[i][0/1]分别表示当前点到当前重心边权和为-i且没有/有中间点的方案数。注意这里的中间点表示到当前点路径和为0的点。下面就到了这道题的两个难点:1、当前重心到某个子节点路径和为0的答案数要单独统计,不能容斥(但其实好像是可以的,只是很麻烦没必要qwq),因为端点不能作为中间点。因此对于每个重心要单独统计(dfs一下就行了),但要在每条路径上第二个到重心路径和为0的点再计入答案(要将第一个点当中间点)。2、如何判断一个点到重心之间是否有中间点是本道题的重中之重。可以用一段区间l,r来表示从当前点到重心的路径上所有点到重心路径和的最大值和最小值,因为每条边都是±1,所以这个区间一定是连续的(即区间中所有路径和都是存在的),那么当遍历到一个点时如果这个点到重心的路径和在这段区间中就说明有中间点。解释一下为什么:如果这个路径和(设为x)存在过就说明之前路径和为x的这个点到当前点之间路径和为0(怎么样,是不是恍然大悟qwq)。统计之后一步容斥就ok了,但需要注意的是从重心dfs时要把区间初始值赋成1–-1(也就是一段不存在的区间)来防止把重心算进方案数。
最后附上代码(这道题和BZOJ3127是同一道题,双倍经验哦)。
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int ma;
int n,k;
int tot;
int num;
long long ans;
int root;
int x,y,z;
int to[200010];
int mx[100010];
int val[200010];
int head[100010];
int next[200010];
int size[100010];
bool vis[100010];
long long f[100010][2];
long long g[100010][2];
void add(int x,int y,int v)
{
tot++;
next[tot]=head[x];
head[x]=tot;
to[tot]=y;
val[tot]=v;
tot++;
next[tot]=head[y];
head[y]=tot;
to[tot]=x;
val[tot]=v;
}
void getroot(int x,int fa)
{
size[x]=1;
mx[x]=0;
for(int i=head[x];i;i=next[i])
{
if(to[i]!=fa&&!vis[to[i]])
{
getroot(to[i],x);
size[x]+=size[to[i]];
mx[x]=max(mx[x],size[to[i]]);
}
}
mx[x]=max(mx[x],num-size[x]);
if(!root||mx[x]<mx[root])
{
root=x;
}
}
void dfs(int x,int fa,int dis,int l,int r)
{
if(dis>=l&&dis<=r)
{
if(dis>=0)
{
f[dis][1]++;
}
else
{
g[-dis][1]++;
}
}
else
{
if(dis>=0)
{
f[dis][0]++;
}
else
{
g[-dis][0]++;
}
}
l=min(l,dis);
r=max(r,dis);
ma=max(ma,max(-l,r));
for(int i=head[x];i;i=next[i])
{
if(to[i]!=fa&&!vis[to[i]])
{
dfs(to[i],x,dis+val[i],l,r);
}
}
}
void calc(int x,int fa,int dis,int cnt)//统计以从重心到子节点为路径的答案
{
if(dis==0)
{
if(cnt>=2)
{
ans++;
}
cnt++;
}
for(int i=head[x];i;i=next[i])
{
if(!vis[to[i]]&&to[i]!=fa)
{
calc(to[i],x,dis+val[i],cnt);
}
}
}
void partition(int x)
{
vis[x]=1;
calc(x,0,0,0);
ma=0;
dfs(x,0,0,1,-1);
ans+=f[0][1]*(f[0][1]-1)/2;
f[0][0]=f[0][1]=0;
for(int i=1;i<=ma;i++)
{
ans+=f[i][1]*g[i][0]+f[i][0]*g[i][1]+f[i][1]*g[i][1];
f[i][1]=f[i][0]=g[i][1]=g[i][0]=0;
}
for(int i=head[x];i;i=next[i])
{
if(!vis[to[i]])
{
ma=0;
dfs(to[i],0,val[i],0,0);
ans-=f[0][1]*(f[0][1]-1)/2;
f[0][0]=f[0][1]=0;
for(int j=0;j<=ma;j++)
{
ans-=f[j][1]*g[j][0]+f[j][0]*g[j][1]+f[j][1]*g[j][1];
f[j][1]=f[j][0]=g[j][1]=g[j][0]=0;
}
num=size[to[i]];
root=0;
getroot(to[i],0);
partition(root);
}
}
}
int main()
{
scanf("%d",&n);
for(int i=1;i<n;i++)
{
scanf("%d%d%d",&x,&y,&z);
if(z==0)
{
z=-1;
}
add(x,y,z);
}
mx[0]=num=n;
getroot(1,0);
partition(root);
printf("%lld",ans);
}
BZOJ3697采药人的路径——点分治的更多相关文章
- BZOJ3697:采药人的路径(点分治)
Description 采药人的药田是一个树状结构,每条路径上都种植着同种药材. 采药人以自己对药材独到的见解,对每种药材进行了分类.大致分为两类,一种是阴性的,一种是阳性的. 采药人每天都要进行采药 ...
- [bzoj3697]采药人的路径——点分治
Brief Description 采药人的药田是一个树状结构,每条路径上都种植着同种药材. 采药人以自己对药材独到的见解,对每种药材进行了分类.大致分为两类,一种是阴性的,一种是阳性的. 采药人每天 ...
- 【BZOJ3697】采药人的路径 点分治
[BZOJ3697]采药人的路径 Description 采药人的药田是一个树状结构,每条路径上都种植着同种药材.采药人以自己对药材独到的见解,对每种药材进行了分类.大致分为两类,一种是阴性的,一种是 ...
- [bzoj3697]采药人的路径_点分治
采药人的路径 bzoj-3697 题目大意:给你一个n个节点的树,每条边分为阴性和阳性,求满足条件的链的个数,使得这条链上阴性的边的条数等于阳性的边的条数,且这条链上存在一个节点,这个节点到一个端点的 ...
- bzoj千题计划248:bzoj3697: 采药人的路径
http://www.lydsy.com/JudgeOnline/problem.php?id=3697 点分治 路径0改为路径-1 g[i][0/1] 和 f[i][0/1]分别表示当前子树 和 已 ...
- BZOJ3697 采药人的路径 【点分治】
题目 采药人的药田是一个树状结构,每条路径上都种植着同种药材. 采药人以自己对药材独到的见解,对每种药材进行了分类.大致分为两类,一种是阴性的,一种是阳性的. 采药人每天都要进行采药活动.他选择的路径 ...
- BZOJ3697: 采药人的路径(点分治)
Description 采药人的药田是一个树状结构,每条路径上都种植着同种药材.采药人以自己对药材独到的见解,对每种药材进行了分类.大致分为两类,一种是阴性的,一种是阳性的.采药人每天都要进行采药活动 ...
- 2019.01.09 bzoj3697: 采药人的路径(点分治)
传送门 点分治好题. 题意:给出一棵树,边分两种,求满足由两条两种边数相等的路径拼成的路径数. 思路: 考虑将边的种类转化成边权−1-1−1和111,这样就只用考虑由两条权值为000的路径拼成的路径数 ...
- BZOJ 3697/3127 采药人的路径 (点分治)
题目大意: 从前有一棵无向树,树上边权均为$0$或$1$,有一个采药人,他认为如果一条路径上边权为$0$和$1$的边数量相等,那么这条路径阴阳平衡.他想寻找一条合法的采药路径,保证阴阳平衡.然后他发现 ...
随机推荐
- npm安装cnpm报错
1.持久使用 npm config set registry https://registry.npm.taobao.org // 配置后可通过下面方式来验证是否成功npm config get re ...
- Oracle 存储过程或函数传入的数值参数number
在oralce中,如果存储过程需要接收含有数值类型的参数时,如何声明呢.如下: CREATE OR REPLACE PACKAGE GPS.PKG_MONTH_TARGET AS ---------- ...
- 转:判断js中的数据类型的几种方法
判断js中的数据类型有一下几种方法:typeof.instanceof. constructor. prototype. $.type()/jquery.type(),接下来主要比较一下这几种方法的异 ...
- 锁、C#中Monitor和Lock以及区别
1.Monitor.Enter(object)方法是获取锁,Monitor.Exit(object)方法是释放锁,这就是Monitor最常用的两个方法,当然在使用过程中为了避免获取锁之后因为异常,致锁 ...
- 我的物联网项目专题移到网站:http://51jdk.com
我的物联网项目专题移到网站:http://51jdk.com
- LVM : 扩展文件系统的容量
如果发现文件系统的容量不足了,可以通过 LVM 轻松的进行扩展(当然也可以进行缩减操作).本文将紧接前文中的 demo 详细的介绍扩展文件系统的操作过程.说明:本文的演示环境为 ubuntu 16.0 ...
- 分布式监控系统Zabbix-3.0.3--短信报警设置
前面已分别介绍了zabbix的邮件.微信报警设置,这些都是手机在有网络时才能收到报警信息,那如果手机没有网的情况下怎么办,这就需要考虑使用短信接口报警了.当服务出现故障达到预警级别是通过发送短信的形式 ...
- ngx_pagespeed-nginx前端优化模块介绍
ngx_pagespeed是Nginx的一个扩展模块,借助pagespeed,为Nginx网站服务器提速.主要的功能是针对前端页面而进行服务器端的优化,对前端设计人员来说,可以省去优化css.js以及 ...
- 《Linux内核分析》第七周笔记 可执行程序的装载
20135132陈雨鑫 + 原创作品转载请注明出处 + <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 ...
- LINUX内核分析第八周总结:进程的切换和系统的一般执行过程
一.进程调度与进程切换 1.不同的进程有不同的调度需求 第一种分类: I/O密集型(I/O-bound) 频繁的进行I/O 通常会花费很多时间等待I/O操作的完成 CPU密集型(CPU-bound) ...