numpy.trace是求shape的对角线上的元素的和,具体看 https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.trace.html

或者搜索 numpy.trace, 二维的比较好理解,对于三维以上的对角线(三维的对角线不止2条,该选哪两条呢)就不好理解了,以下是本人的理解

# 3-D array 的trace算法 

import numpy as np

a = np.arange(8).reshape((2,2,2))
print 'a =',a print np.trace(a) x0 = a[0,0,0] + a[1,1,0]#即 0 + 6
print 'a[1,1,0] =', a[1,1,0],';','x0 =',x0
x1 = a[0,0,1] + a[1,1,1]#即 1 + 7
print 'a[1,1,1] =', a[1,1,1],';','x1 =',x1 #当然你可能认为6 = 2 + 4;或者 8 = 5 + 3,确实一个立方体应该是4条对角线,但是是不是都可以呢
#请看下面的3-D
b = np.array([ [ [100, 198],
[2, 3]],
[ [4, 5],
[6,7]]])
print 'b =',b
print np.trace(b)
y0 = b[0,0,0] + b[1,1,0]#即 0 + 6
print 'y0 = b[0,0,0] + b[1,1,0] = %d + %d = %d' % (b[0,0,0], b[1,1,0], y0)
y1 = b[0,0,1] + b[1,1,1]#即 1 + 7
print 'y1 = b[0,0,1] + b[1,1,1] = %d + %d = %d' % (b[0,0,1], b[1,1,1], y1) #事实证明只能是其中的固定方向的
#之所以能以此种方式思考是因为2-D的直观 c = np.array([[2, 8],
[4,5]])
print 'c =', c
print 'trace =', np.trace(c)
trace_c = c[0,0] + c[1,1]
print 'c[0,0] + c[1,1] = %d + %d = %d' % (c[0,0], c[1,1], trace_c) #来看看4-D的
d = np.arange(32).reshape((2,2,2,4))
print 'd =', d
#猜猜看这个trace结果是什么shape,
#(2, 4),只要去掉前面 2个维度即可
print 'np.trace(d).shape =', np.trace(d).shape
print 'np.trace(d) =', np.trace(d)
td00 = d[0,0,0,0] + d[1,1,0,0]
print 'td00 = ' + 'd[0,0,0,0] + d[1,1,0,0] = %d + %d = %d' % (d[0,0,0,0], d[1,1,0,0], td00)
td01 = d[0,0,0,1] + d[1,1,0,1]
print 'td01 = ' + 'd[0,0,0,1] + d[1,1,0,1] = %d + %d = %d' % (d[0,0,0,1], d[1,1,0,1], td01)
td02 = d[0,0,0,2] + d[1,1,0,2]
print 'td02 = ' + 'd[0,0,0,2] + d[1,1,0,2] = %d + %d = %d' % (d[0,0,0,2], d[1,1,0,2], td02)
td03 = d[0,0,0,3] + d[1,1,0,3]
print 'td03 = ' + 'd[0,0,0,3] + d[1,1,0,3] = %d + %d = %d' % (d[0,0,0,3], d[1,1,0,3], td03) print
td10 = d[0,0,1,0] + d[1,1,1,0]
print 'td10 = ' + 'd[0,0,1,0] + d[1,1,1,0] = %d + %d = %d' % (d[0,0,1,0], d[1,1,1,0], td10)
td11 = d[0,0,1,1] + d[1,1,1,1]
print 'td11 = ' + 'd[0,0,1,1] + d[1,1,1,1] = %d + %d = %d' % (d[0,0,1,1], d[1,1,1,1], td11)
td12 = d[0,0,1,2] + d[1,1,1,2]
print 'td12 = ' + 'd[0,0,1,2] + d[1,1,1,2] = %d + %d = %d' % (d[0,0,1,2], d[1,1,1,2], td12)
td13 = d[0,0,1,3] + d[1,1,1,3]
print 'td13 = ' + 'd[0,0,1,3] + d[1,1,1,3] = %d + %d = %d' % (d[0,0,1,3], d[1,1,1,3], td13)

以下是运行结果:(python 2.7, numpy:1.14.2:

a = [[[0 1]
[2 3]] [[4 5]
[6 7]]]
[6 8]
a[1,1,0] = 6 ; x0 = 6
a[1,1,1] = 7 ; x1 = 8
b = [[[100 198]
[ 2 3]] [[ 4 5]
[ 6 7]]]
[106 205]
y0 = b[0,0,0] + b[1,1,0] = 100 + 6 = 106
y1 = b[0,0,1] + b[1,1,1] = 198 + 7 = 205
c = [[2 8]
[4 5]]
trace = 7
c[0,0] + c[1,1] = 2 + 5 = 7
d = [[[[ 0 1 2 3]
[ 4 5 6 7]] [[ 8 9 10 11]
[12 13 14 15]]] [[[16 17 18 19]
[20 21 22 23]] [[24 25 26 27]
[28 29 30 31]]]]
np.trace(d).shape = (2, 4)
np.trace(d) = [[24 26 28 30]
[32 34 36 38]]
td00 = d[0,0,0,0] + d[1,1,0,0] = 0 + 24 = 24
td01 = d[0,0,0,1] + d[1,1,0,1] = 1 + 25 = 26
td02 = d[0,0,0,2] + d[1,1,0,2] = 2 + 26 = 28
td03 = d[0,0,0,3] + d[1,1,0,3] = 3 + 27 = 30 td10 = d[0,0,1,0] + d[1,1,1,0] = 4 + 28 = 32
td11 = d[0,0,1,1] + d[1,1,1,1] = 5 + 29 = 34
td12 = d[0,0,1,2] + d[1,1,1,2] = 6 + 30 = 36
td13 = d[0,0,1,3] + d[1,1,1,3] = 7 + 31 = 38

numpy.trace对于三维以上array的解析的更多相关文章

  1. 使用C语言实现二维,三维绘图算法(2)-解析曲面的显示

    使用C语言实现二维,三维绘图算法(2)-解析曲面的显示 ---- 引言---- 每次使用OpenGL或DirectX写三维程序的时候, 都有一种隔靴搔痒的感觉, 对于内部的三维算法的实现不甚了解. 其 ...

  2. Python与线性代数——Numpy中的matrix()和array()的区别

    Numpy中matrix必须是2维的,但是 numpy中array可以是多维的(1D,2D,3D····ND).matrix是array的一个小的分支,包含于array.所以matrix 拥有arra ...

  3. Numpy系列(一)- array

    初始Numpy 一.什么是Numpy? 简单来说,Numpy 是 Python 的一个科学计算包,包含了多维数组以及多维数组的操作. Numpy 的核心是 ndarray 对象,这个对象封装了同质数据 ...

  4. numpy中的matrix与array的区别

    Numpy matrices必须是2维的,但是 numpy arrays (ndarrays) 可以是多维的(1D,2D,3D····ND). Matrix是Array的一个小的分支,包含于Array ...

  5. numpy中 array数组的shape属性

    numpy.array 的shape属性理解 在码最邻近算法(K-Nearest Neighbor)的过程中,发现示例使用了numpy的array数组管理,其中关于array数组的shape(状态)属 ...

  6. python 中 numpy array 中的维度

    简介 numpy 创建的数组都有一个shape属性,它是一个元组,返回各个维度的维数.有时候我们可能需要知道某一维的特定维数. 二维情况 >>> import numpy as np ...

  7. 创建 numpy.array

    # 导包 import numpy as np numpy.array nparr = np.array([i for i in range(10)]) nparr # array([0, 1, 2, ...

  8. 【python】numpy array特殊数据统一处理

    array中的某些数据坏掉,想要统一处理,找到了这个方法,做个笔记. 比如,把数组中所有小于0的数字置为0 import numpy as np t = np.array([-2, -1, 0, 1, ...

  9. numpy的array合并-【老鱼学numpy】

    概述 本节主要讲述如何把两个数组按照行或列进行合并. 按行进行上下合并 例如: import numpy as np a = np.array([1, 1, 1]) b = np.array([2, ...

随机推荐

  1. UOJ#30/Codeforces 487E Tourists 点双连通分量,Tarjan,圆方树,树链剖分,线段树

    原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ30.html 题目传送门 - UOJ#30 题意 uoj写的很简洁.清晰,这里就不抄一遍了. 题解 首先建 ...

  2. springboot(@Service,@Mapper)注解失效导致无法注入service和mapper

    给我来灵感的博客:感谢:http://blog.51cto.com/xingej/2053297?utm_source=oschina-app 因为使用了注解的类在使用时是通过new出来的,导致注解注 ...

  3. P1057 传球游戏 dp

    题目描述 上体育课的时候,小蛮的老师经常带着同学们一起做游戏.这次,老师带着同学们一起做传球游戏. 游戏规则是这样的:nn个同学站成一个圆圈,其中的一个同学手里拿着一个球,当老师吹哨子时开始传球,每个 ...

  4. eclipse里面svn比较之前版本的代码

    team——显示资源历史记录比较

  5. Linux内核中Makefile、Kconfig和.config的关系(转)

    我们在编译Linux内核时,往往在Linux内核的顶层目录会执行一些命令,这里我以RK3288举例,比如:make firefly-rk3288-linux_defconfig.make menuco ...

  6. macOS packages安装时的降级处理

    一.降级安装 在制作macOS的pkg安装包时,一般新发布的程序版本会比旧版本更高.但是有的时候我们也希望在安装的时候,对程序的某些依赖库进行降级安装.比如高版本依赖库中出现了一些Bug,使用旧版本的 ...

  7. sudo passwd root输入普通用户密码后显示用户不再sudoers文件中

    在写上一篇VirtualBox创建共享文件夹的时候,在运行下图授权时,root密码一直输入错误 然后我就在终端输入 su root,却发现需要密码,但我却不知道密码是什么 于是我就在终端输入如下命令, ...

  8. Xamarin Essentials教程使用加速度传感器Accelerometer

    Xamarin Essentials教程使用加速度传感器Accelerometer   加速度传感器是一种能够测量加速度的传感器,用于检测设备状态的改变.在Xamarin中,如果开发者想要使用加速度传 ...

  9. 大数据环境完全分布式搭建linux(centos)中安装zookeeper

    切记 要关闭防火墙   chkconfig iptables off(关闭防火墙的命令) 1.解压安装包 tar -zxvf zookeeper-3.4.5.tar.gz 2.在conf文件夹下 修改 ...

  10. C# 使用三层架构实例演示-winForm 窗体登录功能

    ---------------------------------------------------------------------------------------------------华 ...