[Luogu1365] WJMZBMR打osu! / Easy
Description
某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:(
我们来简化一下这个游戏的规则
有 \(n\) 次点击要做,成功了就是o
,失败了就是x
,分数是按combo计算的,连续 \(a\) 个combo就有 \(a\times a\) 分,combo就是极大的连续o
。
比如ooxxxxooooxx
x,分数就是 \(2 \times 2 + 4 \times 4 = 4 +16=20\)。
Sevenkplus闲的慌就看他打了一盘,有些地方跟运气无关要么是o
要么是x
,有些地方o
或者x
各有50%的可能性,用?
号来表示。
比如oo?xx
就是一个可能的输入。 那么WJMZBMR这场osu的期望得分是多少呢?
比如oo?xx
的话,?
是o
的话就是oooxx
=> 9,是x的话就是ooxxx
=> 4
期望自然就是 (4+9)/2=6.5(4+9)/2 =6.5(4+9)/2=6.5 了
Input
第一行一个整数 n ,表示点击的个数
接下来一个字符串,每个字符都是o
,x
,?
中的一个
Output
一行一个浮点数表示答案
四舍五入到小数点后 4 位
如果害怕精度跪建议用long double或者extended
Hint
\(N\leq 300000\)
Solution
显然期望 \(dp\) 的套路。定义两个数组 \(f[i],g[i]\) 分别表示到 \(i\) 的总得分和以 \(i\) 为结尾的 \(combo\) 长度。
如果当前是o
根据 \((x+1)^2=x^2+2x+1\),\(f[i]=f[i-1]+2*g[i-1]+1\),同时 \(g[i]=g[i-1]+1\)
如果当前是x
\(f[i]=f[i-1],g[i]=0\)
如果当前是?
因为各有 \(0.5\) 的可能性,所以 \(f[i]=0.5*(f[i-1]+2*g[i-1]+1)+0.5*f[i-1],g[i]=0.5*(g[i-1]+1)+0.5*0\)
Code
#include<cstdio>
#define N 300005
#define db double
int n;
db f[N];
db g[N];
char ch[N];
signed main(){
scanf("%d",&n);
scanf("%s",ch+1);
for(int i=1;i<=n;i++){
if(ch[i]=='o'){
f[i]=f[i-1]+2*g[i-1]+1;
g[i]=g[i-1]+1;
} else if(ch[i]=='x'){
f[i]=f[i-1];
g[i]=0;
} else{
g[i]=(g[i-1]+1)/2.0;
f[i]=0.5*f[i-1]+0.5*(f[i-1]+2*g[i-1]+1);
}
}
printf("%.4lf\n",f[n]);
return 0;
}
[Luogu1365] WJMZBMR打osu! / Easy的更多相关文章
- WJMZBMR打osu! / Easy
WJMZBMR打osu! / Easy 有一个由o,x,?组成的长度为n的序列,?等概率变为o,x,定义序列权值为连续o的长度o的平方之和,询问权值的期望, 解 注意到权值不是简单的累加关系,存在平方 ...
- P1365 WJMZBMR打osu! / Easy
题目背景 原 维护队列 参见P1903 题目描述 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:( 我们来简化一下这个游戏的规则 有 nnn 次点击要做,成功了就是o,失败了 ...
- 洛谷 P1365 WJMZBMR打osu! / Easy
题目背景 原 维护队列 参见P1903 题目描述 某一天\(WJMZBMR\)在打\(osu~~~\)但是他太弱逼了,有些地方完全靠运气:( 我们来简化一下这个游戏的规则 有\(n\)次点击要做,成功 ...
- luogu P1365 WJMZBMR打osu! / Easy(期望DP)
题目背景 原 维护队列 参见P1903 题目描述 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:( 我们来简化一下这个游戏的规则 有nnn次点击要做,成功了就是o,失败了就是 ...
- Luogu P1365 WJMZBMR打osu! / Easy
概率期望专题首杀-- 毒瘤dp 首先根据数据范围推断出复杂度在O(n)左右 但不管怎么想都是n^2-- 晚上躺在床上吃东西的时候(误)想到之前有几道dp题是通过前缀和优化的 而期望的可加性又似乎为此创 ...
- 洛谷 1365 WJMZBMR打osu! / Easy
题目:https://www.luogu.org/problemnew/show/P1365 大水题.记录一下o的期望长度. 关键是(x+1)^2=x^2+2*x+1. #include<ios ...
- [BZOJ4318] WJMZBMR打osu! / Easy (期望DP)
题目链接 Solution Wa,我是真的被期望折服了,感觉这道题拿来练手正好. DP的难度可做又巧妙... 我们定义: \(f[i]\) 代表到第 \(i\) 次点击的时候的最大答案. \(g[i] ...
- 洛谷P1365 WJMZBMR打osu! / Easy——期望DP
题目:https://www.luogu.org/problemnew/show/P1365 平方和怎样递推? 其实就是 (x+1)^2 = x^2 + 2*x + 1: 所以我们要关注这里的 x — ...
- P1365 WJMZBMR打osu! / Easy-洛谷luogu
传送门 题目背景 原 维护队列 参见P1903 题目描述 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:( 我们来简化一下这个游戏的规则 有nn次点击要做,成功了就是o,失败 ...
随机推荐
- 解决 “access violation at address xxxxxxxxx”错误
在进行磁盘整理的时候,打开Foxmail的时候出现了“access violation at address32383137”错误 和“access violation at address00000 ...
- mysql error#1251客户端版本过低
mysql> ALTER USER 'root'@'localhost' IDENTIFIED BY 'password' PASSWORD EXPIRE NEVER; Query OK, 0 ...
- vector容器用法详解
vector类称作向量类,它实现了动态数组,用于元素数量变化的对象数组.像数组一样,vector类也用从0开始的下标表示元素的位置:但和数组不同的是,当vector对象创建后,数组的元素个数会随着ve ...
- atom编辑器使用“apm install”无法响应的解决方案
工具:shadowsocks 利用ss建立代理服务,之后apm --help,得到apm的配置命令: apm - Atom Package Manager powered by https://ato ...
- python 实践项目
项目一:让用户输入圆的半径,告诉用户圆的面积 思路: 1.首先需要让用户输入一个字符串,即圆的半径 2.判断用户输入的字符串是否为数字 isalpha 3.求圆的面积需要调用到math模块,所以要导 ...
- ActiveMQ_6持久化
activemq持久化 ActiveMQ提供了插件式的消息存储,主要有有如下几种: 1.AMQ消息存储-基于文件的存储方式,是以前的默认消息存储 2.KahaDB消息存储-提供了容量的提升和恢复能力, ...
- 初识RabbitMQ
1.安装 rabbitmq官网:http://www.rabbitmq.com/ 下载地址:https://packagecloud.io/rabbitmq 下载rabbitmq-server 安装脚 ...
- 【git 报错】Could not read from remote repository.Please make sure you have the correct access rights.
我们在使用git clone 或其他命令的时候,有时候会遇到这类问题,如图: and the repository exists. fatal: Could not read from remote ...
- Itween的代码使用方法 - 01
BB:Itween是真心不好用! - 透明度动画 void Start () { //键值对儿的形式保存iTween所用到的参数 Hashtable args = new Hashtable(); / ...
- Socket通信的Demo
https://blog.csdn.net/shankezh/article/details/70763579