P4397 [JLOI2014]聪明的燕姿

题目背景

阴天傍晚车窗外
未来有一个人在等待
向左向右向前看
爱要拐几个弯才来
我遇见谁会有怎样的对白
我等的人他在多远的未来
我听见风来自地铁和人海
我排着队拿着爱的号码牌

题目描述

城市中人们总是拿着号码牌,不停寻找,不断匹配,可是谁也不知道自己等的那个人是谁。

可是燕姿不一样,燕姿知道自己等的人是谁,因为燕姿数学学得好!燕姿发现了一个神奇的算法:假设自己的号码牌上写着数字 \(S\),那么自己等的人手上的号码牌数字的所有正约数之和必定等于 \(S\)。

所以燕姿总是拿着号码牌在地铁和人海找数字(喂!这样真的靠谱吗)可是她忙着唱《绿光》,想拜托你写一个程序能够快速地找到所有自己等的人。

输入输出格式

输入格式:

输入包含 \(k\) 组数据。 对于每组数据,输入包含一个号码牌\(S\)。

输出格式:

对于每组数据,输出有两行,第一行包含一个整数 \(m\),表示有 \(m\) 个等的人。

第二行包含相应的 \(m\) 个数,表示所有等的人的号码牌。

注意:你输出的号码牌必须按照升序排列。

说明

对于 \(100\%\) 的数据,\(k \le 100\), \(S \le 2 \times 10^9\)​​ 。


唯一分解

\(S=\prod p_i^{c^i}\)

约数和\(\sigma(S)=\prod \sum_{i=0}^{c^i} p_i^i\)

然后可以直接搜索\(c\)和\(p\)

注意一些边界情况即可


Code:

#include <cstdio>
#include <algorithm>
const int N=1e7;
int pri[N+10],ispri[N+10],cnt,k,tot,s[N];
void init()
{
for(int i=2;i<=N;i++)
{
if(!ispri[i])
pri[++cnt]=i;
for(int j=1;j<=cnt&&pri[j]*i<=N;j++)
{
ispri[pri[j]*i]=1;
if(i%pri[j]==0) break;
}
}
}
bool check(int p,int dep)
{
if(p<=N) return !ispri[p]&&p>=pri[dep];
for(int i=1;pri[i]<=46340&&pri[i]*pri[i]<=p;i++)
if(p%pri[i]==0) return false;
return true;
}
void dfs(int res,int dep,int num)
{
if(res==1) {s[++tot]=num;return;}
if(check(res-1,dep)) dfs(1,dep,(res-1)*num);
if(res<pri[dep]*pri[dep]) return;
dfs(res,dep+1,num);
int po=pri[dep]+1,hmi=pri[dep];
while(po<=res)
{
if(res%po!=0)
{
po=po*pri[dep]+1,hmi*=pri[dep];
continue;
}
dfs(res/po,dep+1,num*hmi);
if(po>46340) break;
po=po*pri[dep]+1,hmi*=pri[dep];
}
}
int main()
{
init();
while(scanf("%d",&k)!=EOF)
{
tot=0;
dfs(k,1,1);
std::sort(s+1,s+1+tot);
tot=std::unique(s+1,s+1+tot)-s-1;
printf("%d\n",tot);
for(int i=1;i<=tot;i++) printf("%d ",s[i]);
if(tot) printf("\n");
}
return 0;
}

2018.10.10

P4397 [JLOI2014]聪明的燕姿的更多相关文章

  1. bzoj3629 / P4397 [JLOI2014]聪明的燕姿

    P4397 [JLOI2014]聪明的燕姿 根据唯一分解定理 $n=q_{1}^{p_{1}}*q_{2}^{p_{2}}*q_{3}^{p_{3}}*......*q_{m}^{p_{m}}$ 而$ ...

  2. 洛谷 P4397 [JLOI2014]聪明的燕姿 / TOPOI 测验1315, 问题E: 1935: 聪明的燕姿 解题报告

    题目链接 : 1. 洛谷 2.topoi . 大致题意:输入一个数s,找出所有约数和为s的数 关于一个数的约数和求法: 一个>1的整数可以被分解为多个 质数 的乘方,设数 s = p1k1 *  ...

  3. 洛谷P4397 [JLOI2014]聪明的燕姿

    传送门 dfs的时候莫名其妙深度太大过不了……然后死活找不出哪里错…… 首先,约数和这东西是个积性函数,或者直接点的话就是如果$$n=p_1^{a_1}p_2^{a_2}p_3^{a_3}…p_m^{ ...

  4. BZOJ_3629_[JLOI2014]聪明的燕姿_dfs

    BZOJ_3629_[JLOI2014]聪明的燕姿_dfs Description 阴天傍晚车窗外 未来有一个人在等待 向左向右向前看 爱要拐几个弯才来 我遇见谁会有怎样的对白 我等的人他在多远的未来 ...

  5. 【LG4397】[JLOI2014]聪明的燕姿

    [LG4397][JLOI2014]聪明的燕姿 题面 洛谷 题解 考虑到约数和函数\(\sigma = \prod (1+p_i+...+p_i^{r_i})\),直接爆搜把所有数搜出来即可. 爆搜过 ...

  6. [JLOI2014]聪明的燕姿(搜索)

    城市中人们总是拿着号码牌,不停寻找,不断匹配,可是谁也不知道自己等的那个人是谁. 可是燕姿不一样,燕姿知道自己等的人是谁,因为燕姿数学学得好!燕姿发现了一个神奇的算法:假设自己的号码牌上写着数字 S, ...

  7. bzoj 3629 [JLOI2014]聪明的燕姿(约数和,搜索)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3629 [题意] 给定S,找出所有约数和为S的数. [思路] 若n=p1^a1*p2^a ...

  8. bzoj3629[JLOI2014]聪明的燕姿

    http://www.lydsy.com/JudgeOnline/problem.php?id=3629 搜索. 我们知道: 如果$N=\prod\limits_{i=1}^{m}p_{i}^{k_{ ...

  9. [BZOJ 3629][ JLOI2014 ]聪明的燕姿

    这道题考试选择打表,完美爆零.. 算数基本定理: 任何一个大于1的自然数N,都可以唯一分解成有限个质数的乘积N=P₁^a₁ P₂^a₂…Pn^an,这里P₁<P₂<…<Pn均为质数, ...

随机推荐

  1. LeetCode700. Search in a Binary Search Tree

    题目 给定二叉搜索树(BST)的根节点和一个值. 你需要在BST中找到节点值等于给定值的节点. 返回以该节点为根的子树. 如果节点不存在,则返回 NULL. 例如, 给定二叉搜索树: 4 / \ 2 ...

  2. POJ的层次感分类

    转载自:[http://blog.csdn.net/zzycsx/article/details/49103451] OJ上的一些水题(可用来练手和增加自信)  (poj3299,poj2159,po ...

  3. XStream 工具类 [ XmlUtil ]

    pom.xml <dependency> <groupId>com.thoughtworks.xstream</groupId> <artifactId> ...

  4. Shell学习——列出当前路径下所有目录

    1.ls -d */[root@client02 ~]# ls -d */Desktop/ Documents/ Downloads/ jq-1.5/ Music/ Pictures/ Public/ ...

  5. JZOJ 5919. 逛公园

    Description            琥珀色黄昏像糖在很美的远方,思念跟影子在傍晚一起被拉长……Description      小 B 带着 GF 去逛公园,公园一共有 n 个景点,标号为 ...

  6. C语言进阶——分支语句06

    if分支语句分析: if语句用于根据条件选择执行语句 else不能独立存在且总是与在它之前的最近if相匹配 esle语句后可以连接其他if语句 用法如下: if(condition) { //stat ...

  7. VUE前端无法启动

    cd 到client中,使用npm run dev ,一直卡着也不报错,启动不了项目 可以直接使用 ,需要进入root目录进行 cnpm install npm -g

  8. HyperLedger Fabric 1.4 区块链技术形成(1.2)

    在比特币诞生之时,没有区块链技术概念,当人们看到比特币在无中心干预的前提下,还能安全.可靠的运行,比特币网络打开了人们的想象空间:技术专家们开始研究比特币的底层技术,并抽象提取出来,形成区块链技术,或 ...

  9. JS实现禁用滑动条但滑动条不消失的效果

    //方法 //滑动条 // left: 37, up: 38, right: 39, down: 40, // spacebar: 32, pageup: 33, pagedown: 34, end: ...

  10. python基础之装饰器扩展和迭代器

    wraps模块 让原函数保留原来的说明信息 import time import random from functools import wraps def auth(func): '''auth ...