P4397 [JLOI2014]聪明的燕姿
P4397 [JLOI2014]聪明的燕姿
题目背景
阴天傍晚车窗外
未来有一个人在等待
向左向右向前看
爱要拐几个弯才来
我遇见谁会有怎样的对白
我等的人他在多远的未来
我听见风来自地铁和人海
我排着队拿着爱的号码牌
题目描述
城市中人们总是拿着号码牌,不停寻找,不断匹配,可是谁也不知道自己等的那个人是谁。
可是燕姿不一样,燕姿知道自己等的人是谁,因为燕姿数学学得好!燕姿发现了一个神奇的算法:假设自己的号码牌上写着数字 \(S\),那么自己等的人手上的号码牌数字的所有正约数之和必定等于 \(S\)。
所以燕姿总是拿着号码牌在地铁和人海找数字(喂!这样真的靠谱吗)可是她忙着唱《绿光》,想拜托你写一个程序能够快速地找到所有自己等的人。
输入输出格式
输入格式:
输入包含 \(k\) 组数据。 对于每组数据,输入包含一个号码牌\(S\)。
输出格式:
对于每组数据,输出有两行,第一行包含一个整数 \(m\),表示有 \(m\) 个等的人。
第二行包含相应的 \(m\) 个数,表示所有等的人的号码牌。
注意:你输出的号码牌必须按照升序排列。
说明
对于 \(100\%\) 的数据,\(k \le 100\), \(S \le 2 \times 10^9\) 。
唯一分解
\(S=\prod p_i^{c^i}\)
约数和\(\sigma(S)=\prod \sum_{i=0}^{c^i} p_i^i\)
然后可以直接搜索\(c\)和\(p\)
注意一些边界情况即可
Code:
#include <cstdio>
#include <algorithm>
const int N=1e7;
int pri[N+10],ispri[N+10],cnt,k,tot,s[N];
void init()
{
for(int i=2;i<=N;i++)
{
if(!ispri[i])
pri[++cnt]=i;
for(int j=1;j<=cnt&&pri[j]*i<=N;j++)
{
ispri[pri[j]*i]=1;
if(i%pri[j]==0) break;
}
}
}
bool check(int p,int dep)
{
if(p<=N) return !ispri[p]&&p>=pri[dep];
for(int i=1;pri[i]<=46340&&pri[i]*pri[i]<=p;i++)
if(p%pri[i]==0) return false;
return true;
}
void dfs(int res,int dep,int num)
{
if(res==1) {s[++tot]=num;return;}
if(check(res-1,dep)) dfs(1,dep,(res-1)*num);
if(res<pri[dep]*pri[dep]) return;
dfs(res,dep+1,num);
int po=pri[dep]+1,hmi=pri[dep];
while(po<=res)
{
if(res%po!=0)
{
po=po*pri[dep]+1,hmi*=pri[dep];
continue;
}
dfs(res/po,dep+1,num*hmi);
if(po>46340) break;
po=po*pri[dep]+1,hmi*=pri[dep];
}
}
int main()
{
init();
while(scanf("%d",&k)!=EOF)
{
tot=0;
dfs(k,1,1);
std::sort(s+1,s+1+tot);
tot=std::unique(s+1,s+1+tot)-s-1;
printf("%d\n",tot);
for(int i=1;i<=tot;i++) printf("%d ",s[i]);
if(tot) printf("\n");
}
return 0;
}
2018.10.10
P4397 [JLOI2014]聪明的燕姿的更多相关文章
- bzoj3629 / P4397 [JLOI2014]聪明的燕姿
P4397 [JLOI2014]聪明的燕姿 根据唯一分解定理 $n=q_{1}^{p_{1}}*q_{2}^{p_{2}}*q_{3}^{p_{3}}*......*q_{m}^{p_{m}}$ 而$ ...
- 洛谷 P4397 [JLOI2014]聪明的燕姿 / TOPOI 测验1315, 问题E: 1935: 聪明的燕姿 解题报告
题目链接 : 1. 洛谷 2.topoi . 大致题意:输入一个数s,找出所有约数和为s的数 关于一个数的约数和求法: 一个>1的整数可以被分解为多个 质数 的乘方,设数 s = p1k1 * ...
- 洛谷P4397 [JLOI2014]聪明的燕姿
传送门 dfs的时候莫名其妙深度太大过不了……然后死活找不出哪里错…… 首先,约数和这东西是个积性函数,或者直接点的话就是如果$$n=p_1^{a_1}p_2^{a_2}p_3^{a_3}…p_m^{ ...
- BZOJ_3629_[JLOI2014]聪明的燕姿_dfs
BZOJ_3629_[JLOI2014]聪明的燕姿_dfs Description 阴天傍晚车窗外 未来有一个人在等待 向左向右向前看 爱要拐几个弯才来 我遇见谁会有怎样的对白 我等的人他在多远的未来 ...
- 【LG4397】[JLOI2014]聪明的燕姿
[LG4397][JLOI2014]聪明的燕姿 题面 洛谷 题解 考虑到约数和函数\(\sigma = \prod (1+p_i+...+p_i^{r_i})\),直接爆搜把所有数搜出来即可. 爆搜过 ...
- [JLOI2014]聪明的燕姿(搜索)
城市中人们总是拿着号码牌,不停寻找,不断匹配,可是谁也不知道自己等的那个人是谁. 可是燕姿不一样,燕姿知道自己等的人是谁,因为燕姿数学学得好!燕姿发现了一个神奇的算法:假设自己的号码牌上写着数字 S, ...
- bzoj 3629 [JLOI2014]聪明的燕姿(约数和,搜索)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3629 [题意] 给定S,找出所有约数和为S的数. [思路] 若n=p1^a1*p2^a ...
- bzoj3629[JLOI2014]聪明的燕姿
http://www.lydsy.com/JudgeOnline/problem.php?id=3629 搜索. 我们知道: 如果$N=\prod\limits_{i=1}^{m}p_{i}^{k_{ ...
- [BZOJ 3629][ JLOI2014 ]聪明的燕姿
这道题考试选择打表,完美爆零.. 算数基本定理: 任何一个大于1的自然数N,都可以唯一分解成有限个质数的乘积N=P₁^a₁ P₂^a₂…Pn^an,这里P₁<P₂<…<Pn均为质数, ...
随机推荐
- 【学时总结】◆学时·V◆ 逆元法
◆学时·V◆ 逆元法 □算法概述□ 逆元运算是模运算中的一个技巧,一般用于解决模运算的除法问题.模运算对于加.减.乘是有封闭性的,即 (a±b)%m=a%m±b%m,以及 (a×b)%m=a%m×b% ...
- Zeppelin interperter 模式设置总结图解2
该配置是在zeppelin的Interpreter的后台配置文件:conf/Interpreter.json spark Interpreter的模块定义那里.特别感谢开发团队组长大神的提示,深入挖掘 ...
- python__系统 : 进程
在类unix操作系统下,可以用 os.fork() 创建一个新的进程,windows系统不可以: import os ret = os.fork() print('ret=%d' % ret) : p ...
- 判断移动端和pc端最简单的方法
<!DOCTYPE html><html><head> <title></title> <script type="text ...
- POJ:3320-Jessica's Reading Problem(尺取法)
Jessica's Reading Problem Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 15224 Accepted: ...
- Kings(状压DP)
Description 用字符矩阵来表示一个8x8的棋盘,'.'表示是空格,'P'表示人质,'K'表示骑士.每一步,骑士可以移动到他周围的8个方格中的任意一格.如果你移动到的格子中有人质(即'P'), ...
- java线程安全(单例模式)(转载)
原文链接:http://www.jameswxx.com/java/%E8%AF%B4%E8%AF%B4%E5%8D%95%E4%BE%8B%E6%A8%A1%E5%BC%8F/ 单例模式?多么简单! ...
- 后端接口迁移(从 webapi 到 openapi)前端经验总结
此文已由作者张磊授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. 前情提要 以前用的是 webapi 现在统一切成 openapi,字段结构统统都变了 接入接口 20+,涉及模 ...
- 关于代码通过API操作阿里云RDS的巨坑
由于项目原因,要通过API操作阿里云的数据库,于是简单研究了一下阿里云提供的相关文档,发现官方提供了.NET的SDK,而且还提供了github开源代码,这个要为阿里点赞! 于是到github上弄了一份 ...
- b树的实现
花了蛮长时间实现的b树插入操作.有时间再实现其他操作. #include <stdio.h> #include <stdlib.h> #define M 5 enum KeyS ...