一、问题描述

以你咕的模板题为例

题目描述

有\(n\)个布尔变量\(x_1\)~\(x_n\),另有\(m\)个需要满足的条件,每个条件的形式都是“\(x_i\)为true/false或\(x_j\)为true/false”。

比如“\(x_1\)为真或\(x_3\)为假”、“\(x_7\)为假或\(x_2\)为假”。

2-SAT 问题的目标是给每个变量赋值使得所有条件得到满足。

二、逻辑关系

这里不用太过专业的符号来说明逻辑关系,仅仅是感性说明(没错就是我菜)

设条件为大写字母A,B,非A,非B只条件的另一种取值

A或者B 等价于 非A则B 和 非B则A

注意到后面两个要求似乎有蜜汁对称性,而且它们都是有向的

根据后一句话,我们借助并查集扩展域的思想,把一个点的两个取值拆开,进行建图

三、建图

这里就画图举例说明吧

给出这样三个条件\((1,1)\)或\((2,1)\),\((2,1)\)或\((3,1)\),\((2,0)\)或(3,1)$

\((x,y)\)表示\(x\)需要取值\(y\)

我们把点\(x\)取值\(0\)的点编号\(x\),取值\(1\)的点编号\(x+n\)

我们可以建出如下的图

有向边\((u,v)\)表示如果\(u\)选,\(v\)一定选

很显然这是有解的,我们可以去\(1,2,3\)等点集

怎么样才会无解呢?

如果一个点的出边的点构成的集合中又出现了它自己?这样可以不选它而选另一个值啊

如果这个集合出现了另一个值呢?

好吧,这里的无解其实就是综合一下,选它的同时要选它的另一个值,选它的另一个值同时要选它

等价于两者在有向图中处于同一个环中

这样我们就可以通过tarjan求环来判断有解性了

四、构造合法方案

如果一个点没有伸出去的边,就代表它不约束别人,我们可以随便选择选或不选它

设\(cho[]\),若\(cho[x]==0\)则代表我们选择了它,否则我们没有选择它

优先选择出度为0的点

我们可以在缩点后的图中反向建图,然后做拓扑排序

注意我们选择一个点后,要把它对应的点置不选

事实上,我们也可以没必要做这么麻烦

dfs遍历的DAG图的序列反过来其实就是反向建边的拓扑序

在tarjan中先做的点的编号就是反向建边拓扑序

那么我们直接比编号大小进行赋值就可以啦

五、参考代码

#include <cstdio>
int min(int x,int y){return x<y?x:y;}
const int N=2e6+10;
int head[N],to[N<<1],Next[N<<1],cnt,n,m;
void add(int u,int v)
{
to[++cnt]=v;Next[cnt]=head[u];head[u]=cnt;
}
void init()
{
scanf("%d%d",&n,&m);
for(int i,a,j,b,k=1;k<=m;k++)
{
scanf("%d%d%d%d",&i,&a,&j,&b);
add(i+(1-a)*n,j+b*n),add(j+(1-b)*n,i+a*n);
}
}
int dfn[N],low[N],in[N],s[N],ha[N],tot,dfs_clock,n_;
void tarjan(int now)
{
dfn[now]=low[now]=++dfs_clock;
s[++tot]=now;
in[now]=1;
for(int i=head[now];i;i=Next[i])
{
int v=to[i];
if(!dfn[v])
{
tarjan(v);
low[now]=min(low[now],low[v]);
}
else if(in[v])
low[now]=min(low[now],dfn[v]);
}
if(low[now]==dfn[now])
{
int k;++n_;
do
{
k=s[tot--];
ha[k]=n_;
in[k]=0;
}while(k!=now);
}
}
void work()
{
for(int i=1;i<=n<<1;i++) if(!dfn[i]) tarjan(i);
for(int i=1;i<=n;i++)
if(ha[i]==ha[i+n])
{
printf("IMPOSSIBLE\n");
return;
}
printf("POSSIBLE\n");
for(int i=1;i<=n;i++)
printf("%d ",ha[i]>ha[i+n]);
}
int main()
{
init();
work();
return 0;
}

2018.9.1

2-sat 学习笔记的更多相关文章

  1. <老友记>学习笔记

    这是六个人的故事,从不服输而又有强烈控制欲的monica,未经世事的千金大小姐rachel,正直又专情的ross,幽默风趣的chandle,古怪迷人的phoebe,花心天真的joey——六个好友之间的 ...

  2. OGG学习笔记02-单向复制配置实例

    OGG学习笔记02-单向复制配置实例 实验环境: 源端:192.168.1.30,Oracle 10.2.0.5 单实例 目标端:192.168.1.31,Oracle 10.2.0.5 单实例 1. ...

  3. python数据分析入门学习笔记

    学习利用python进行数据分析的笔记&下星期二内部交流会要讲的内容,一并分享给大家.博主粗心大意,有什么不对的地方欢迎指正~还有许多尚待完善的地方,待我一边学习一边完善~ 前言:各种和数据分 ...

  4. 【MarkMark学习笔记学习笔记】javascript/js 学习笔记

    1.0, 概述.JavaScript是ECMAScript的实现之一 2.0,在HTML中使用JavaScript. 2.1 3.0,基本概念 3.1,ECMAScript中的一切(变量,函数名,操作 ...

  5. Linux 学习笔记之超详细基础linux命令 Part 13

    Linux学习笔记之超详细基础linux命令 by:授客 QQ:1033553122 ---------------------------------接Part 12---------------- ...

  6. Linux 学习笔记之超详细基础linux命令 Part 8

    Linux学习笔记之超详细基础linux命令 by:授客 QQ:1033553122 ---------------------------------接Part 7----------------- ...

  7. Deep learning with Python 学习笔记(5)

    本节讲深度学习用于文本和序列 用于处理序列的两种基本的深度学习算法分别是循环神经网络(recurrent neural network)和一维卷积神经网络(1D convnet) 与其他所有神经网络一 ...

  8. 【Redis】命令学习笔记——字符串(String)(23个超全字典版)

    Redis支持五种数据类型:string(字符串),hash(哈希),list(列表),set(集合)及zset(sorted set:有序集合). 本篇基于redis 4.0.11版本,学习字符串( ...

  9. programming-languages学习笔记--第3部分

    programming-languages学习笔记–第3部分 */--> pre.src {background-color: #292b2e; color: #b2b2b2;} pre.src ...

  10. 学习笔记 - 2sat

    学习笔记 - 2sat 决定重新启用Markdown--只是因为它支持MathJax数学公式 noip考完,既轻松又无奈,回来慢慢填坑 这篇博客也是拖了好久,通过kuangbin的博客才弄懂2-sat ...

随机推荐

  1. 利用deadline_timer实现定时器Timer

    // 类似QTimer的定时器 class Timer { typedef void(* handler)(); public: Timer() : m_millseconds() , m_timer ...

  2. 如何在maven中的项目使用tomcat插件

    在pom.xml中引入tomcat7插件,具体示例代码如下: <project> <build> <plugins> <plugin> <grou ...

  3. POJ:2449-Remmarguts' Date(单源第K短路)

    Remmarguts' Date Time Limit: 4000MS Memory Limit: 65536K Total Submissions: 33081 Accepted: 8993 Des ...

  4. 笔记-python-module-logging.循环日志、多进程日志

    笔记-python-module-logging.循环日志.多进程日志 1.      logging循环日志 循环日志分为按大小切分和按时间切分,对应实现类如下. 1.1.  RotatingFil ...

  5. spring源码学习中的知识点

    一.循环依赖 循环依赖就是循环引用,就是两个或多个bean之间互相持有对方. 1.构造器循环依赖 表示通过构造器注入造成的循环依赖,此依赖是无法解决的,只能抛出BeanCurrentlyInCreat ...

  6. 05,Python网络爬虫之三种数据解析方式

    回顾requests实现数据爬取的流程 指定url 基于requests模块发起请求 获取响应对象中的数据 进行持久化存储 其实,在上述流程中还需要较为重要的一步,就是在持久化存储之前需要进行指定数据 ...

  7. Android stadio Switch repository Android stadio切换仓库

    Android stadio 有时候,有很多module. 这些module 都有自己的仓库.也就是不在一块.那么,Android stadio 默认管理的就是根git. 如图,画对号的就是默认的. ...

  8. 跨站请求伪造(csrf)中间件整理

    一. CSRF中间件 字面意思跨站请求伪造; 即模仿个请求朝服务器发送,django中对跨站伪造的请求有相应的校验 from django.views.decorators.csrf import c ...

  9. Unicode字符图标

    http://unicode-table.com/cn/#control-character

  10. 剑指Offer - 九度1351 - 数组中只出现一次的数字

    剑指Offer - 九度1351 - 数组中只出现一次的数字2013-11-23 01:23 题目描述: 一个整型数组里除了两个数字之外,其他的数字都出现了两次.请写程序找出这两个只出现一次的数字. ...